These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12568621)

  • 1. Determination of critical micelle concentration by hyper-rayleigh scattering.
    Ghosh S; Krishnan A; Das PK; Ramakrishnan S
    J Am Chem Soc; 2003 Feb; 125(6):1602-6. PubMed ID: 12568621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New fluorescence method for the determination of the critical micelle concentration by photosensitive monoazacryptand derivatives.
    Nakahara Y; Kida T; Nakatsuji Y; Akashi M
    Langmuir; 2005 Jul; 21(15):6688-95. PubMed ID: 16008375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups. 1. Adsorption and micellization.
    Yoshimura T; Nyuta K; Esumi K
    Langmuir; 2005 Mar; 21(7):2682-8. PubMed ID: 15779935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical applications of hyper-Rayleigh scattering in solution.
    Das PK
    J Phys Chem B; 2006 Apr; 110(15):7621-30. PubMed ID: 16610851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for the determination of the critical micelle concentration of Triton X-100 in the absence and presence of beta-cyclodextrin by resonance Rayleigh scattering technology.
    Li N; Luo H; Liu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1811-5. PubMed ID: 15248954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with hyper-Rayleigh scattering.
    Revillod G; Russier-Antoine I; Benichou E; Jonin C; Brevet PF
    J Phys Chem B; 2005 Mar; 109(11):5383-7. PubMed ID: 16863205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counterion condensation and release in micellar solutions.
    Hsiao CC; Wang TY; Tsao HK
    J Chem Phys; 2005 Apr; 122(14):144702. PubMed ID: 15847548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup.
    Dias RS; Magno LM; Valente AJ; Das D; Das PK; Maiti S; Miguel MG; Lindman B
    J Phys Chem B; 2008 Nov; 112(46):14446-52. PubMed ID: 18774843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micelle formation of polyoxyethylene-type nonionic surfactants in bmimBF4 studied by 1H NMR and dynamic light-scattering.
    Inoue T
    J Colloid Interface Sci; 2009 Sep; 337(1):240-6. PubMed ID: 19435633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally cleavable surfactants based on furan-maleimide Diels-Alder adducts.
    McElhanon JR; Zifer T; Kline SR; Wheeler DR; Loy DA; Jamison GM; Long TM; Rahimian K; Simmons BA
    Langmuir; 2005 Apr; 21(8):3259-66. PubMed ID: 15807562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical properties of anionic triple-chain surfactants in alkaline solutions.
    Yoshimura T; Esumi K
    J Colloid Interface Sci; 2004 Aug; 276(2):450-5. PubMed ID: 15271573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains.
    Li Y; Reeve J; Wang Y; Thomas RK; Wang J; Yan H
    J Phys Chem B; 2005 Aug; 109(33):16070-4. PubMed ID: 16853041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical micelle concentrations and interaction parameters of aqueous binary surfactant:ionic surfactant mixtures.
    Akisada H; Kuwahara J; Noyori K; Kuba R; Shimooka T; Yamada A
    J Colloid Interface Sci; 2005 Aug; 288(1):238-46. PubMed ID: 15927585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants.
    Andreatta G; Bostrom N; Mullins OC
    Langmuir; 2005 Mar; 21(7):2728-36. PubMed ID: 15779941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of zwitterionic phosphocholine surfactant monolayers.
    Yaseen M; Lu JR; Webster JR; Penfold J
    Langmuir; 2006 Jun; 22(13):5825-32. PubMed ID: 16768514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt Effect on Critical Micelle Concentrations of Nonionic Surfactants, N-Acyl-N-methylglucamides (MEGA-n).
    Miyagishi S; Okada K; Asakawa T
    J Colloid Interface Sci; 2001 Jun; 238(1):91-95. PubMed ID: 11350141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography.
    Simmons RN; McGuffin VL
    Anal Chim Acta; 2007 Nov; 603(1):93-100. PubMed ID: 17950063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.