BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 12568662)

  • 1. Whole-body protein turnover of a carnivore, Felis silvestris catus.
    Russell K; Lobley GE; Millward DJ
    Br J Nutr; 2003 Jan; 89(1):29-37. PubMed ID: 12568662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urea kinetics of a carnivore, Felis silvestris catus.
    Russell K; Lobley GE; Rawlings J; Millward DJ; Harper EJ
    Br J Nutr; 2000 Nov; 84(5):597-604. PubMed ID: 11177172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Level of dietary protein impacts whole body protein turnover in trained males at rest.
    Gaine PC; Pikosky MA; Martin WF; Bolster DR; Maresh CM; Rodriguez NR
    Metabolism; 2006 Apr; 55(4):501-7. PubMed ID: 16546481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of body protein deposition and changes in body composition after sudden changes in amino acid intake: II. Entire male pigs.
    Martínez-Ramírez HR; Jeaurond EA; de Lange CF
    J Anim Sci; 2008 Sep; 86(9):2168-79. PubMed ID: 18441077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body composition of breeding gilts in response to dietary protein and energy balance from thirty kilograms of body weight to completion of first parity.
    Gill BP
    J Anim Sci; 2006 Jul; 84(7):1926-34. PubMed ID: 16775077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net portal and hepatic flux of nutrients in growing wethers fed high-concentrate diets with oscillating protein concentrations.
    Archibeque SL; Freetly HC; Ferrell CL
    J Anim Sci; 2007 Apr; 85(4):997-1005. PubMed ID: 17145976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in whole-body protein turnover between Iberian and Landrace pigs fed adequate or lysine-deficient diets.
    Rivera-Ferre MG; Aguilera JF; Nieto R
    J Anim Sci; 2006 Dec; 84(12):3346-55. PubMed ID: 17093227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic upper limit to whole-body protein deposition in a strain of growing pigs.
    Moughan PJ; Jacobson LH; Morel PC
    J Anim Sci; 2006 Dec; 84(12):3301-9. PubMed ID: 17093222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of energy metabolism in weanling barrows: the interaction of dietary energy concentration and daily feed (energy) intake.
    Oresanya TF; Beaulieu AD; Patience JF
    J Anim Sci; 2008 Feb; 86(2):348-63. PubMed ID: 17998419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glucose and insulin response to isoenergetic reduction of dietary energy sources in a true carnivore: the domestic cat ( Felis catus).
    Verbrugghe A; Hesta M; Van Weyenberg S; Papadopoulos GA; Gommeren K; Daminet S; Bosmans T; Polis I; Buyse J; Janssens GP
    Br J Nutr; 2010 Jul; 104(2):214-21. PubMed ID: 20193098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dietary protein and calorie restriction in clinically normal cats and in cats with surgically induced chronic renal failure.
    Adams LG; Polzin DJ; Osborne CA; O'Brien TD
    Am J Vet Res; 1993 Oct; 54(10):1653-62. PubMed ID: 8250390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein and arginine requirements for maintenance and nitrogen gain in four teleosts.
    Fournier V; Gouillou-Coustans MF; Métailler R; Vachot C; Guedes MJ; Tulli F; Oliva-Teles A; Tibaldi E; Kaushik SJ
    Br J Nutr; 2002 May; 87(5):459-68. PubMed ID: 12010584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net protein oxidation is adapted to dietary protein intake in domestic cats (Felis silvestris catus).
    Russell K; Murgatroyd PR; Batt RM
    J Nutr; 2002 Mar; 132(3):456-60. PubMed ID: 11880571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of oscillating dietary protein concentrations on finishing cattle. II. Nutrient retention and ammonia emissions.
    Archibeque SL; Freetly HC; Cole NA; Ferrell CL
    J Anim Sci; 2007 Jun; 85(6):1496-503. PubMed ID: 17264236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of selenium supply and dietary restriction on maternal and fetal body weight, visceral organ mass and cellularity estimates, and jejunal vascularity in pregnant ewe lambs.
    Reed JJ; Ward MA; Vonnahme KA; Neville TL; Julius SL; Borowicz PP; Taylor JB; Redmer DA; Grazul-Bilska AT; Reynolds LP; Caton JS
    J Anim Sci; 2007 Oct; 85(10):2721-33. PubMed ID: 17609476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs.
    Caton JS; Reed JJ; Aitken RP; Milne JS; Borowicz PP; Reynolds LP; Redmer DA; Wallace JM
    J Anim Sci; 2009 Jan; 87(1):222-35. PubMed ID: 18791144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens.
    Strieker MJ; Morris JG; Rogers QR
    J Anim Physiol Anim Nutr (Berl); 2006 Aug; 90(7-8):344-53. PubMed ID: 16867080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dietary selenium supply and timing of nutrient restriction during gestation on maternal growth and body composition of pregnant adolescent ewes.
    Carlson DB; Reed JJ; Borowicz PP; Taylor JB; Reynolds LP; Neville TL; Redmer DA; Vonnahme KA; Caton JS
    J Anim Sci; 2009 Feb; 87(2):669-80. PubMed ID: 18997074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary control of protein turnover.
    Arnal M; Obled C; Attaix D; Patureau-Mirand P; Bonin D
    Diabete Metab; 1987; 13(6):630-42. PubMed ID: 3329127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing dietary crude protein does not increase the methionine requirement in kittens.
    Strieker MJ; Morris JG; Kass PH; Rogers QR
    J Anim Physiol Anim Nutr (Berl); 2007 Dec; 91(11-12):465-74. PubMed ID: 17988350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.