BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12569329)

  • 21. Technetium-99m-labelled HL91 and technetium-99m-labelled MIBI SPECT imaging for the detection of ischaemic viable myocardium: a preliminary study.
    Liu M; Ma Z; Guo X; Zhu J; Su J
    Clin Physiol Funct Imaging; 2012 Jan; 32(1):25-32. PubMed ID: 22152075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous assessment of myocardial viability and function for the detection of hibernating myocardium using ECG-gated 99Tcm-tetrofosmin emission tomography: a comparison with 201Tl emission tomography combined with cine magnetic resonance imaging.
    Gunning MG; Anagnostopoulos C; Davies G; Knight CJ; Pennell DJ; Fox KM; Pepper J; Underwood SR
    Nucl Med Commun; 1999 Mar; 20(3):209-14. PubMed ID: 10093069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Added value of attenuation-corrected Tc-99m tetrofosmin SPECT for the detection of myocardial viability: comparison with FDG SPECT.
    Slart RH; Bax JJ; Sluiter WJ; van Veldhuisen DJ; Jager PL
    J Nucl Cardiol; 2004; 11(6):689-96. PubMed ID: 15592192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(15):1-45. PubMed ID: 23074392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of left ventricular functional recovery by dobutamine echocardiography, F-18 deoxyglucose or 99mTc sestamibi nuclear imaging in patients with chronic myocardial infarction.
    Lund GK; Freyhoff J; Schwaiger M; Lübeck M; Lund CH; Buchert R; Sheehan FH; Meinertz T; Nienaber CA
    Cardiology; 2002; 98(4):202-9. PubMed ID: 12566650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diagnosis of myocardial viability by dual-head coincidence gamma camera fluorine-18 fluorodeoxyglucose positron emission tomography with and without non-uniform attenuation correction.
    Nowak B; Zimny M; Schwarz ER; Kaiser HJ; Schaefer W; Reinartz P; vom Dahl J; Buell U
    Eur J Nucl Med; 2000 Oct; 27(10):1501-8. PubMed ID: 11083539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pulsed wave tissue Doppler imaging for the quantification of contractile reserve in stunned, hibernating, and scarred myocardium.
    Bountioukos M; Schinkel AF; Bax JJ; Rizzello V; Valkema R; Krenning BJ; Biagini E; Vourvouri EC; Roelandt JR; Poldermans D
    Heart; 2004 May; 90(5):506-10. PubMed ID: 15084544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography.
    de Silva R; Yamamoto Y; Rhodes CG; Iida H; Nihoyannopoulos P; Davies GJ; Lammertsma AA; Jones T; Maseri A
    Circulation; 1992 Dec; 86(6):1738-42. PubMed ID: 1451245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dobutamine stress echocardiography and technetium-99m-tetrofosmin/fluorine 18-fluorodeoxyglucose single-photon emission computed tomography and influence of resting ejection fraction to assess myocardial viability in patients with severe left ventricular dysfunction and healed myocardial infarction.
    Rambaldi R; Poldermans D; Bax JJ; Boersma E; Valkema R; Elhendy A; Vletter WB; Fioretti PM; Roelandt JR; Krenning EP
    Am J Cardiol; 1999 Jul; 84(2):130-4. PubMed ID: 10426327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs.
    Fallavollita JA; Canty JM
    Circulation; 1999 Jun; 99(21):2798-805. PubMed ID: 10351975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of sestamibi single-photon emission computed tomography with positron emission tomography for estimating left ventricular myocardial viability.
    Soufer R; Dey HM; Ng CK; Zaret BL
    Am J Cardiol; 1995 Jun; 75(17):1214-9. PubMed ID: 7778542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of SPECT attenuation correction on the quantification of hibernating myocardium as derived from combined myocardial perfusion SPECT and ¹⁸F-FDG PET.
    Lehner S; Sussebach C; Todica A; Uebleis C; Brunner S; Bartenstein P; Van Kriekinge SD; Germano G; Hacker M
    J Nucl Cardiol; 2014 Jun; 21(3):578-87. PubMed ID: 24633501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative rest technetium-99m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-redistribution thallium-201.
    Matsunari I; Fujino S; Taki J; Senma J; Aoyama T; Wakasugi T; Hirai J; Saga T; Yamamoto S; Tonami N
    J Am Coll Cardiol; 1997 May; 29(6):1226-33. PubMed ID: 9137217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease.
    Lucignani G; Paolini G; Landoni C; Zuccari M; Paganelli G; Galli L; Di Credico G; Vanoli G; Rossetti C; Mariani MA
    Eur J Nucl Med; 1992; 19(10):874-81. PubMed ID: 1451704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative assessment of 18F-fluorodeoxyglucose PET and 99mTc-tetrofosmin SPECT for the prediction of functional recovery in patients with reperfused acute myocardial infarction.
    Shirasaki H; Nakano A; Uzui H; Yonekura Y; Okazawa H; Ueda T; Lee JD
    Eur J Nucl Med Mol Imaging; 2006 Aug; 33(8):879-86. PubMed ID: 16586079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hibernating myocardium: morphological correlates of inotropic stimulation and glucose uptake.
    Pagano D; Townend JN; Parums DV; Bonser RS; Camici PG
    Heart; 2000 Apr; 83(4):456-61. PubMed ID: 10722551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of sestamibi, thallium, echocardiography and PET for the detection of hibernating myocardium.
    Barrington SF; Chambers J; Hallett WA; O'Doherty MJ; Roxburgh JC; Nunan TO
    Eur J Nucl Med Mol Imaging; 2004 Mar; 31(3):355-61. PubMed ID: 14647986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of improvement of regional left ventricular function after revascularization using different perfusion-metabolism criteria.
    Bax JJ; Visser FC; Elhendy A; Poldermans D; Cornel JH; van Lingen A; Boersma E; Sloof GW; Fioretti PM; Visser CA
    J Nucl Med; 1999 Nov; 40(11):1866-73. PubMed ID: 10565782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct epicardial mapping can differentiate hibernating from scarred myocardium: a validation study with 18F-FDG-PET.
    Vahlhaus C; Schäfers M; Bruns HJ; Janssen F; Stypmann J; Hammel D; Scheld HH; Schober O; Breithardt G; Wichter T
    Ann Noninvasive Electrocardiol; 2002 Oct; 7(4):349-56. PubMed ID: 12431313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation.
    Gerber BL; Vanoverschelde JL; Bol A; Michel C; Labar D; Wijns W; Melin JA
    Circulation; 1996 Aug; 94(4):651-9. PubMed ID: 8772684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.