BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 12569529)

  • 1. Influence of methanol as a buffer additive on the mobilities of organic cations in capillary electrophoresis.
    Roy KI; Lucy CA
    Electrophoresis; 2003 Jan; 24(3):370-9. PubMed ID: 12569529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric friction as a mechanism for selectivity alteration in capillary electrophoresis using acetonitrile-water media.
    Roy KI; Lucy CA
    Electrophoresis; 2002 Feb; 23(3):383-92. PubMed ID: 11870737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic mobilities of large organic ions in nonaqueous solvents: determination by capillary electrophoresis in propylene carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, acetonitrile and methanol.
    Muzikar J; van De Goor T; Gas B; Kenndler E
    Electrophoresis; 2002 Feb; 23(3):375-82. PubMed ID: 11870736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary electrophoresis in aqueous-organic media. Ionic strength effects and limitations of the Hubbard-Onsager dielectric friction model.
    Roy KI; Lucy CA
    J Chromatogr A; 2002 Jul; 964(1-2):213-25. PubMed ID: 12198851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric friction in capillary electrophoresis: mobility of organic anions in mixed methanol-water media.
    Roy KI; Lucy CA
    Anal Chem; 2001 Aug; 73(16):3854-61. PubMed ID: 11534707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE.
    Plasson R; Vayaboury W; Giani O; Cottet H
    Electrophoresis; 2007 Oct; 28(20):3617-24. PubMed ID: 17941129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2007 Apr; 28(7):1053-62. PubMed ID: 17295422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D; Kasicka V; Zusková I
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary electrophoresis of boron cluster compounds in aqueous and nonaqueous solvents.
    Valeri AL; Kremser L; Raggi MA; Grüner B; Vespalec R; Kenndler E
    Electrophoresis; 2008 Apr; 29(8):1658-66. PubMed ID: 18383019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoretic mobilities of cationic analytes in non-aqueous methanol, acetonitrile and their mixtures. Influence of ionic strength and ion-pair formation.
    Porras SP; Riekkola ML; Kenndler E
    J Chromatogr A; 2001 Jul; 924(1-2):31-42. PubMed ID: 11521879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nonaqueous buffer modifiers on the capillary electrophoresis-mass spectrometry analysis of peptides.
    Deterding LJ; Khaledi M; Tomer KB
    J Capill Electrophor Microchip Technol; 2003; 8(1-2):11-8. PubMed ID: 12757123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoresis of anionic analytes in methanol: effect of counter-ions on electrophoretic mobility.
    Porras SP; Riekkola ML; Kenndler E
    Electrophoresis; 2002 Feb; 23(3):367-74. PubMed ID: 11870735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACE applied to the quantitative characterization of benzo-18-crown-6-ether binding with alkali metal ions in a methanol-water solvent system.
    Ehala S; Makrlík E; Toman P; Kasicka V
    Electrophoresis; 2010 Jan; 31(4):702-8. PubMed ID: 20108263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semipermanent capillary coatings in mixed organic-water solvents for CE.
    Diress AG; Yassine MM; Lucy CA
    Electrophoresis; 2007 Apr; 28(8):1189-96. PubMed ID: 17366479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of electrophoretic mobilities. 3. Effect of ionic strength in capillary zone electrophoresis.
    Li D; Fu S; Lucy CA
    Anal Chem; 1999 Feb; 71(3):687-99. PubMed ID: 21662723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electrolyte nature on the separation selectivity of amphetamines in nonaqueous capillary electrophoresis: protonation degree versus ion pairing effects.
    Descroix S; Varenne A; Geiser L; Cherkaoui S; Veuthey JL; Gareil P
    Electrophoresis; 2003 May; 24(10):1577-86. PubMed ID: 12761787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-volume stacking in capillary electrophoresis using a methanol run buffer.
    Kim B; Chung DS
    Electrophoresis; 2002 Jan; 23(1):49-55. PubMed ID: 11824621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of anti-tumor peptides by capillary electrophoresis in organic solvent containing background electrolytes.
    Idei M; Kiss E; Dobos Z; Hallgas B; Mészáros G; Hollósy F; Kéri G
    Electrophoresis; 2003 Mar; 24(5):829-33. PubMed ID: 12627444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation effects in the separation of calix[4]pyrroles by nonaqueous capillary electrophoresis with tetraalkylammonium chloride salts as background electrolytes.
    Ma H; Luo M; Shao S; Liu X; Jiang S
    J Chromatogr A; 2008 May; 1192(1):180-6. PubMed ID: 18395731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.