These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12570304)

  • 1. Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging.
    Philip J; Carlsson K
    J Opt Soc Am A Opt Image Sci Vis; 2003 Feb; 20(2):368-79. PubMed ID: 12570304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy.
    Elder A; Schlachter S; Kaminski CF
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):452-62. PubMed ID: 18246179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative comparison of polar approach versus fitting method in time domain FLIM image analysis.
    Leray A; Spriet C; Trinel D; Blossey R; Usson Y; Héliot L
    Cytometry A; 2011 Feb; 79(2):149-58. PubMed ID: 21265008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis and optimization of frequency-domain fluorescence lifetime imaging microscopy using homodyne lock-in detection.
    Lin Y; Gmitro AF
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1145-55. PubMed ID: 20448782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of signal-to-noise ratio in frequency-domain multiphoton fluorescence lifetime imaging microscopy.
    Zhang Y; Khan AA; Vigil GD; Howard SS
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):B1-B11. PubMed ID: 27409702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm.
    Li DU; Walker R; Richardson J; Rae B; Buts A; Renshaw D; Henderson R
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):804-14. PubMed ID: 19340255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgrading time domain FLIM using an adaptive Monte Carlo data inflation algorithm.
    Trinel D; Leray A; Spriet C; Usson Y; Héliot L
    Cytometry A; 2011 Jul; 79(7):528-37. PubMed ID: 21567936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation.
    Leray A; Spriet C; Trinel D; Usson Y; Héliot L
    J Microsc; 2012 Oct; 248(1):66-76. PubMed ID: 22971219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue.
    Pfefer TJ; Wang Q; Drezek RA
    Comput Methods Programs Biomed; 2011 Nov; 104(2):161-7. PubMed ID: 21111507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the signal and noise transfer of CCD cameras for electron detection.
    Meyer RR; Kirkland AI
    Microsc Res Tech; 2000 May; 49(3):269-80. PubMed ID: 10816267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media.
    Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q
    Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal detectability in digital radiography: spatial domain figures of merit.
    Gagne RM; Boswell JS; Myers KJ
    Med Phys; 2003 Aug; 30(8):2180-93. PubMed ID: 12945984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?
    Vishwanath K; Mycek MA
    Opt Lett; 2004 Jul; 29(13):1512-4. PubMed ID: 15259730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epifluorescence collection in two-photon microscopy.
    Beaurepaire E; Mertz J
    Appl Opt; 2002 Sep; 41(25):5376-82. PubMed ID: 12211567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues.
    Swartling J; Pifferi A; Enejder AM; Andersson-Engels S
    J Opt Soc Am A Opt Image Sci Vis; 2003 Apr; 20(4):714-27. PubMed ID: 12683499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PoDFluX: a new Monte Carlo ray-tracing model for powder diffraction and fluorescence.
    Hansford GM
    Rev Sci Instrum; 2009 Jul; 80(7):073903. PubMed ID: 19655961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inclusion of coherence in Monte Carlo models for simulation of x-ray phase contrast imaging.
    Cipiccia S; Vittoria FA; Weikum M; Olivo A; Jaroszynski DA
    Opt Express; 2014 Sep; 22(19):23480-8. PubMed ID: 25321817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The performance of a hybrid analytical-Monte Carlo system response matrix in pinhole SPECT reconstruction.
    El Bitar Z; Pino F; Candela C; Ros D; Pavía J; Rannou FR; Ruibal A; Aguiar P
    Phys Med Biol; 2014 Dec; 59(24):7573-85. PubMed ID: 25415206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.