These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12570427)

  • 1. Granular avalanches in fluids.
    Courrech Du Pont S; Gondret P; Perrin B; Rabaud M
    Phys Rev Lett; 2003 Jan; 90(4):044301. PubMed ID: 12570427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collapse dynamics and runout of dense granular materials in a fluid.
    Topin V; Monerie Y; Perales F; Radjaï F
    Phys Rev Lett; 2012 Nov; 109(18):188001. PubMed ID: 23215333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers.
    Pignatel F; Asselin C; Krieger L; Christov IC; Ottino JM; Lueptow RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011304. PubMed ID: 23005408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoinertial regime of immersed granular flows.
    Amarsid L; Delenne JY; Mutabaruka P; Monerie Y; Perales F; Radjai F
    Phys Rev E; 2017 Jul; 96(1-1):012901. PubMed ID: 29347241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscous to Inertial Transition in Dense Granular Suspension.
    Tapia F; Ichihara M; Pouliquen O; Guazzelli É
    Phys Rev Lett; 2022 Aug; 129(7):078001. PubMed ID: 36018678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of dry granular avalanches.
    Fischer R; Gondret P; Perrin B; Rabaud M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021302. PubMed ID: 18850826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of immersed granular avalanches.
    Mutabaruka P; Delenne JY; Soga K; Radjai F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052203. PubMed ID: 25353783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary Filling at the Microscale: Control of Fluid Front Using Geometry.
    Trejo-Soto C; Costa-Miracle E; Rodriguez-Villarreal I; Cid J; Alarcón T; Hernández-Machado A
    PLoS One; 2016; 11(4):e0153559. PubMed ID: 27104734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fluid inertia on probe-tack adhesion.
    Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016312. PubMed ID: 22400663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular fingering in fluid injection into dense granular media in a Hele-Shaw cell.
    Huang H; Zhang F; Callahan P; Ayoub J
    Phys Rev Lett; 2012 Jun; 108(25):258001. PubMed ID: 23004661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape.
    Lundell F; Carlsson A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016323. PubMed ID: 20365476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decompaction and fluidization of a saturated and confined granular medium by injection of a viscous liquid or gas.
    Johnsen Ø; Chevalier C; Lindner A; Toussaint R; Clément E; Måløy KJ; Flekkøy EG; Schmittbuhl J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051302. PubMed ID: 19113120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drag law for an intruder in granular sediments.
    Panaitescu A; Clotet X; Kudrolli A
    Phys Rev E; 2017 Mar; 95(3-1):032901. PubMed ID: 28415378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triggering granular avalanches with ultrasound.
    Léopoldès J; Jia X; Tourin A; Mangeney A
    Phys Rev E; 2020 Oct; 102(4-1):042901. PubMed ID: 33212721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.