These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Improving the electrical conductivity of carbon nanotube networks: a first-principles study. Li EY; Marzari N ACS Nano; 2011 Dec; 5(12):9726-36. PubMed ID: 22059779 [TBL] [Abstract][Full Text] [Related]
4. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes. Ambrosi A; Pumera M Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697 [TBL] [Abstract][Full Text] [Related]
5. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory. Li YT; Chen TC Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947 [TBL] [Abstract][Full Text] [Related]
6. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes. Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162 [TBL] [Abstract][Full Text] [Related]
7. Critical metal phase at the Anderson metal-insulator transition with Kondo impurities. Kettemann S; Mucciolo ER; Varga I Phys Rev Lett; 2009 Sep; 103(12):126401. PubMed ID: 19792449 [TBL] [Abstract][Full Text] [Related]
8. A density functional theory study of shake-up satellites in photoemission of carbon fullerenes and nanotubes. Gao B; Wu Z; Luo Y J Chem Phys; 2008 Jun; 128(23):234704. PubMed ID: 18570516 [TBL] [Abstract][Full Text] [Related]
9. Deviations from Born-Oppenheimer theory in structural chemistry: Jahn-Teller, pseudo Jahn-Teller, and hidden pseudo Jahn-Teller effects in C3H3 and C3H3(-). Kayi H; Garcia-Fernandez P; Bersuker IB; Boggs JE J Phys Chem A; 2013 Sep; 117(36):8671-9. PubMed ID: 23901786 [TBL] [Abstract][Full Text] [Related]
10. Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers. Ge C; Li W; Li Y; Li B; Du J; Qiu Y; Liu Y; Gao Y; Chai Z; Chen C J Nanosci Nanotechnol; 2011 Mar; 11(3):2389-97. PubMed ID: 21449398 [TBL] [Abstract][Full Text] [Related]
11. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon. Saxena S; Tyson TA ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666 [TBL] [Abstract][Full Text] [Related]
12. Kondo effect of magnetic impurities in nanotubes. Baruselli PP; Smogunov A; Fabrizio M; Tosatti E Phys Rev Lett; 2012 May; 108(20):206807. PubMed ID: 23003169 [TBL] [Abstract][Full Text] [Related]
14. Electronic properties of a graphene antidot in magnetic fields. Park PS; Kim SC; Yang SR J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of water inside endohedrally functionalized carbon nanotubes. Paul S; Abi TG; Taraphder S J Chem Phys; 2014 May; 140(18):184511. PubMed ID: 24832292 [TBL] [Abstract][Full Text] [Related]
16. Theory of nitrogen doping of carbon nanoribbons: edge effects. Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795 [TBL] [Abstract][Full Text] [Related]
17. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568 [TBL] [Abstract][Full Text] [Related]
18. DFT-based studies on the Jahn-Teller effect in 3d hexacyanometalates with orbitally degenerate ground states. Atanasov M; Comba P; Daul CA; Hauser A J Phys Chem A; 2007 Sep; 111(37):9145-63. PubMed ID: 17718456 [TBL] [Abstract][Full Text] [Related]
19. Helicity in ropes of chiral nanotubes: calculations and observation. Teich D; Seifert G; Iijima S; Tománek D Phys Rev Lett; 2012 Jun; 108(23):235501. PubMed ID: 23003969 [TBL] [Abstract][Full Text] [Related]