These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12570513)

  • 1. Triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes.
    Lin LC; Meng HF; Shy JT; Horng SF; Yu LS; Chen CH; Liaw HH; Huang CC; Peng KY; Chen SA
    Phys Rev Lett; 2003 Jan; 90(3):036601. PubMed ID: 12570513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes".
    Schott M
    Phys Rev Lett; 2004 Feb; 92(5):059701; author reply 059702. PubMed ID: 14995351
    [No Abstract]   [Full Text] [Related]  

  • 3. Comment on "triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes".
    Dhoot AS; Greenham NC
    Phys Rev Lett; 2003 Nov; 91(21):219702;discussion 219703. PubMed ID: 14683345
    [No Abstract]   [Full Text] [Related]  

  • 4. Comment on "triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes".
    Osterbacka R
    Phys Rev Lett; 2003 Nov; 91(21):219701; discussion 219703. PubMed ID: 14683344
    [No Abstract]   [Full Text] [Related]  

  • 5. Singlet-triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: an EOM/CCSD study.
    Chen L; Zhu L; Shuai Z
    J Phys Chem A; 2006 Dec; 110(50):13349-54. PubMed ID: 17165858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of Polymer Light-Emitting Diodes: A Perspective.
    Van der Zee B; Li Y; Wetzelaer GAH; Blom PWM
    Adv Mater; 2022 Apr; 34(13):e2108887. PubMed ID: 34786784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes.
    Shuai Z; Beljonne D; Silbey RJ; Bredas JL
    Phys Rev Lett; 2000 Jan; 84(1):131-4. PubMed ID: 11015852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forbidden singlet exciton transitions induced by localization in polymer light-emitting diodes in a strong electric field.
    Sun Z; Xu YP; Li S; George TF
    J Phys Chem B; 2011 Feb; 115(5):869-73. PubMed ID: 21174472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: a competition between exciton formation and spin mixing.
    Kersten SP; Schellekens AJ; Koopmans B; Bobbert PA
    Phys Rev Lett; 2011 May; 106(19):197402. PubMed ID: 21668199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse intersystem crossing from upper triplet levels to excited singlet: a 'hot excition' path for organic light-emitting diodes.
    Hu D; Yao L; Yang B; Ma Y
    Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host matrix dependent fluorescence intensity modulation by an electric field in single conjugated polymer chains.
    Hania PR; Thomsson D; Scheblykin IG
    J Phys Chem B; 2006 Dec; 110(51):25895-900. PubMed ID: 17181237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intersystem Crossing and Triplet Fusion in Singlet-Fission-Dominated Rubrene-Based OLEDs Under High Bias Current.
    Tang X; Hu Y; Jia W; Pan R; Deng J; Deng J; He Z; Xiong Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1948-1956. PubMed ID: 29300090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures.
    PĂ„lsson LO; Vaughan HL; Monkman AP
    J Chem Phys; 2006 Oct; 125(16):164701. PubMed ID: 17092114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yield of singlet excitons in organic light-emitting devices: a double modulation photoluminescence-detected magnetic resonance study.
    Lee MK; Segal M; Soos ZG; Shinar J; Baldo MA
    Phys Rev Lett; 2005 Apr; 94(13):137403. PubMed ID: 15904034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct monitoring of bias-dependent variations in the exciton formation ratio of working organic light emitting diodes.
    Takahashi T; Kanemoto K; Kanenobu M; Okawauchi Y; Hashimoto H
    Sci Rep; 2015 Oct; 5():15533. PubMed ID: 26487499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet exciton binding energy in poly(phenylene vinylene).
    Moses D; Wang J; Heeger AJ; Kirova N; Brazovski S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13496-500. PubMed ID: 11707589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Transfer of Triplet to Doublet Excitons from Organometallic Host to Organic Radical Semiconductors.
    Gu Q; Gorgon S; Romanov AS; Li F; Friend RH; Evans EW
    Adv Mater; 2024 Jul; 36(30):e2402790. PubMed ID: 38819637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroluminescence from light-emitting diodes by using water-dispersed ZnSe nanocrystals and polymer.
    Xiong S; Huang S; Tang A; Teng F
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1341-5. PubMed ID: 18468150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities.
    Guo J; Ohkita H; Benten H; Ito S
    J Am Chem Soc; 2009 Nov; 131(46):16869-80. PubMed ID: 19886624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating Light from Upper Excited Triplet States: A Contribution to the Indirect Singlet Yield of a Polymer OLED, Helping to Exceed the 25% Singlet Exciton Limit.
    Jankus V; Aydemir M; Dias FB; Monkman AP
    Adv Sci (Weinh); 2016 Jan; 3(1):1500221. PubMed ID: 27610333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.