These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12570665)

  • 1. Annelid neuroimmune system.
    Lefebvre C; Salzet M
    Curr Pharm Des; 2003; 9(2):149-58. PubMed ID: 12570665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invertebrate molecular neuroimmune processes.
    Salzet M
    Brain Res Brain Res Rev; 2000 Nov; 34(1-2):69-79. PubMed ID: 11086187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative aspects of invertebrate neuropeptides.
    Muneoka Y; Morishita F; Furukawa Y; Matsushima O; Kobayashi M; Ohtani M; Takahashi T; Iwakoshi E; Fujisawa Y; Minakata H
    Acta Biol Hung; 2000; 51(2-4):111-32. PubMed ID: 11034137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invertebrate opioid precursors: evolutionary conservation and the significance of enzymatic processing.
    Stefano GB; Salzet M
    Int Rev Cytol; 1999; 187():261-86. PubMed ID: 10212982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.
    Bailly X; Leroy R; Carney S; Collin O; Zal F; Toulmond A; Jollivet D
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5885-90. PubMed ID: 12721359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neuropeptide complement of the marine annelid Platynereis dumerilii.
    Conzelmann M; Williams EA; Krug K; Franz-Wachtel M; Macek B; Jékely G
    BMC Genomics; 2013 Dec; 14():906. PubMed ID: 24359412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Globin gene family evolution and functional diversification in annelids.
    Bailly X; Chabasse C; Hourdez S; Dewilde S; Martial S; Moens L; Zal F
    FEBS J; 2007 May; 274(10):2641-52. PubMed ID: 17451435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of an invertebrate-type lysozyme from the nephridia of the echiura, Urechis unicinctus, and its recombinant production and activities.
    Oh HY; Kim CH; Go HJ; Park NG
    Fish Shellfish Immunol; 2018 Aug; 79():351-362. PubMed ID: 29753144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-immune lessons from an annelid: The medicinal leech.
    Tasiemski A; Salzet M
    Dev Comp Immunol; 2017 Jan; 66():33-42. PubMed ID: 27381717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel cDNA sequence encoding invertebrate tachykinin-related peptides isolated from the echiuroid worm, Urechis unicinctus.
    Kawada T; Satake H; Minakata H; Muneoka Y; Nomoto K
    Biochem Biophys Res Commun; 1999 Oct; 263(3):848-52. PubMed ID: 10512769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide precursors in Tribolium castaneum.
    Amare A; Sweedler JV
    Peptides; 2007 Jun; 28(6):1282-91. PubMed ID: 17537543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches.
    Southey BR; Rodriguez-Zas SL; Sweedler JV
    BMC Genomics; 2009 May; 10():228. PubMed ID: 19445702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of prohormone convertase 2 and the generation of neuropeptides in the developing nervous system of the gastropod Haliotis.
    Cummins SF; York PS; Hanna PH; Degnan BM; Croll RP
    Int J Dev Biol; 2009; 53(7):1081-8. PubMed ID: 19598126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel neuropeptides in the ventral nerve cord ganglia and their targets in an annelid worm, Eisenia fetida.
    Herbert Z; Pollák E; Zougman A; Boros A; Kapan N; Molnár L
    J Comp Neurol; 2009 Jun; 514(5):415-32. PubMed ID: 19350635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids.
    Salzet M; Vieau D; Day R
    Trends Neurosci; 2000 Nov; 23(11):550-5. PubMed ID: 11074264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution.
    Tessmar-Raible K; Raible F; Christodoulou F; Guy K; Rembold M; Hausen H; Arendt D
    Cell; 2007 Jun; 129(7):1389-400. PubMed ID: 17604726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Peptides and their biological activities from invertebrates: molluscs and annelids].
    Minakata H; Nomoto K
    Seikagaku; 1998 Mar; 70(3):164-84. PubMed ID: 9591462
    [No Abstract]   [Full Text] [Related]  

  • 18. Innate immunity in lophotrochozoans: the annelids.
    Salzet M; Tasiemski A; Cooper E
    Curr Pharm Des; 2006; 12(24):3043-50. PubMed ID: 16918433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems.
    Zandawala M; Tian S; Elphick MR
    Gen Comp Endocrinol; 2018 Aug; 264():64-77. PubMed ID: 28622978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors.
    Veenstra JA
    Arch Insect Biochem Physiol; 2000 Feb; 43(2):49-63. PubMed ID: 10644969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.