These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12570786)

  • 1. Rapid translation system (RTS): a promising alternative for recombinant protein production.
    Betton JM
    Curr Protein Pept Sci; 2003 Feb; 4(1):73-80. PubMed ID: 12570786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid translation system: a novel cell-free way from gene to protein.
    Hoffmann M; Nemetz C; Madin K; Buchberger B
    Biotechnol Annu Rev; 2004; 10():1-30. PubMed ID: 15504701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/ translation system.
    Martin GA; Kawaguchi R; Lam Y; DeGiovanni A; Fukushima M; Mutter W
    Biotechniques; 2001 Oct; 31(4):948-50, 952-3. PubMed ID: 11680726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems.
    Wick S; Walsh DI; Bobrow J; Hamad-Schifferli K; Kong DS; Thorsen T; Mroszczyk K; Carr PA
    ACS Synth Biol; 2019 May; 8(5):1010-1025. PubMed ID: 30920800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-free protein production system with the E. coli crude extract for determination of protein folds.
    Kigawa T
    Methods Mol Biol; 2010; 607():101-11. PubMed ID: 20204852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free protein preparation through prokaryotic transcription-translation methods.
    Kigawa T
    Methods Mol Biol; 2010; 607():1-10. PubMed ID: 20204843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Escherichia coli cell-free system for recombinant protein synthesis on a milligram scale.
    Miles LA; Crespi GA; Han S; Hill AF; Parker MW
    Methods Mol Biol; 2011; 752():17-28. PubMed ID: 21713628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome engineering for improved recombinant protein expression in Escherichia coli.
    Mahalik S; Sharma AK; Mukherjee KJ
    Microb Cell Fact; 2014 Dec; 13():177. PubMed ID: 25523647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AmyI-1-18, a cationic α-helical antimicrobial octadecapeptide derived from α-amylase in rice, inhibits the translation and folding processes in a protein synthesis system.
    Taniguchi M; Ochiai A; Fukuda S; Sato T; Saitoh E; Kato T; Tanaka T
    J Biosci Bioeng; 2016 Oct; 122(4):385-92. PubMed ID: 27038670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Escherichia coli production of therapeutic proteins.
    Swartz JR
    Curr Opin Biotechnol; 2001 Apr; 12(2):195-201. PubMed ID: 11287237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient plasmid vector for constitutive high-level expression of foreign genes in Escherichia coli.
    Seo JW; Hong WK; Rairakhwada D; Seo PS; Choi MH; Song KB; Rhee SK; Kim CH
    Biotechnol Lett; 2009 Jun; 31(6):877-81. PubMed ID: 19214389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based.
    Hillebrecht JR; Chong S
    BMC Biotechnol; 2008 Jul; 8():58. PubMed ID: 18664286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-free protein synthesis systems with extracts from cultured human cells.
    Mikami S; Kobayashi T; Imataka H
    Methods Mol Biol; 2010; 607():43-52. PubMed ID: 20204847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of protein expression in a cell free system.
    Resto E; Iida A; Van Cleve MD; Hecht SM
    Nucleic Acids Res; 1992 Nov; 20(22):5979-83. PubMed ID: 1281316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.
    Mikami S; Kobayashi T; Machida K; Masutani M; Yokoyama S; Imataka H
    Biotechnol Lett; 2010 Jul; 32(7):897-902. PubMed ID: 20349333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.
    Taniguchi M; Ochiai A; Kondo H; Fukuda S; Ishiyama Y; Saitoh E; Kato T; Tanaka T
    J Biosci Bioeng; 2016 May; 121(5):591-8. PubMed ID: 26472128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid recombinant protein expression in cell-free extracts from human blood.
    Burgenson D; Gurramkonda C; Pilli M; Ge X; Andar A; Kostov Y; Tolosa L; Rao G
    Sci Rep; 2018 Jun; 8(1):9569. PubMed ID: 29934577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing PCR fragment stability and protein yields in a cell-free system with genetically modified Escherichia coli extracts.
    Michel-Reydellet N; Woodrow K; Swartz J
    J Mol Microbiol Biotechnol; 2005; 9(1):26-34. PubMed ID: 16254443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in producing and selecting functional proteins by using cell-free translation.
    Jermutus L; Ryabova LA; Plückthun A
    Curr Opin Biotechnol; 1998 Oct; 9(5):534-48. PubMed ID: 9821285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.