These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 12570990)
1. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Wahlbom CF; Cordero Otero RR; van Zyl WH; Hahn-Hägerdal B; Jönsson LJ Appl Environ Microbiol; 2003 Feb; 69(2):740-6. PubMed ID: 12570990 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Eliasson A; Christensson C; Wahlbom CF; Hahn-Hägerdal B Appl Environ Microbiol; 2000 Aug; 66(8):3381-6. PubMed ID: 10919795 [TBL] [Abstract][Full Text] [Related]
3. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386 [TBL] [Abstract][Full Text] [Related]
4. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH; Aristidou A; Ruohonen L; Penttilä M Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146 [TBL] [Abstract][Full Text] [Related]
5. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. Johansson B; Hahn-Hägerdal B FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276 [TBL] [Abstract][Full Text] [Related]
6. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Walfridsson M; Hallborn J; Penttilä M; Keränen S; Hahn-Hägerdal B Appl Environ Microbiol; 1995 Dec; 61(12):4184-90. PubMed ID: 8534086 [TBL] [Abstract][Full Text] [Related]
7. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Jin YS; Laplaza JM; Jeffries TW Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745 [TBL] [Abstract][Full Text] [Related]
9. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639 [TBL] [Abstract][Full Text] [Related]
10. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606 [TBL] [Abstract][Full Text] [Related]
11. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030 [TBL] [Abstract][Full Text] [Related]
12. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Zha J; Shen M; Hu M; Song H; Yuan Y J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893 [TBL] [Abstract][Full Text] [Related]
13. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Wahlbom CF; Eliasson A; Hahn-Hägerdal B Biotechnol Bioeng; 2001 Feb; 72(3):289-96. PubMed ID: 11135198 [TBL] [Abstract][Full Text] [Related]
14. Improved Xylose Metabolism by a Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963 [TBL] [Abstract][Full Text] [Related]
16. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
17. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
18. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
19. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558 [TBL] [Abstract][Full Text] [Related]