These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12571486)

  • 21. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.
    Schmidt H; Heuer F; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):270-8. PubMed ID: 17997207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development, validation, and application of ligamentous cervical spinal segment C6-C7 of a six-year-old child and an adult.
    Li Z; Song G; Su Z; Wang G
    Comput Methods Programs Biomed; 2020 Jan; 183():105080. PubMed ID: 31525549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.
    Goel VK; Clausen JD
    Spine (Phila Pa 1976); 1998 Mar; 23(6):684-91. PubMed ID: 9549790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between finite helical axes and facet joint forces under combined loading.
    Schmidt H; Heuer F; Wilke HJ
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2741-8. PubMed ID: 19050579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading.
    Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2000 Dec; 15(10):718-25. PubMed ID: 11050353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine: a finite element investigation.
    Little JP; Adam CJ
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):895-903. PubMed ID: 21652127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of bone graft force in stabilizing the multilevel anterior cervical spine plate system.
    Wang JL; Panjabi MM; Isomi T
    Spine (Phila Pa 1976); 2000 Jul; 25(13):1649-54. PubMed ID: 10870140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence prediction of injury and vibration on adjacent components of spine using finite element methods.
    Guo LX; Teo EC
    J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posteriorly directed shear loads and disc degeneration affect the torsional stiffness of spinal motion segments: a biomechanical modeling study.
    Homminga J; Lehr AM; Meijer GJ; Janssen MM; Schlösser TP; Verkerke GJ; Castelein RM
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1313-9. PubMed ID: 23797503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishment and Finite Element Analysis of a Three-dimensional Dynamic Model of Upper Cervical Spine Instability.
    Wang XD; Feng MS; Hu YC
    Orthop Surg; 2019 Jun; 11(3):500-509. PubMed ID: 31243925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of the finite element method to study the mechanism of spinal cord injury without radiological abnormality in the cervical spine.
    Imajo Y; Hiiragi I; Kato Y; Taguchi T
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E83-7. PubMed ID: 19139658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.
    Zafarparandeh I; Erbulut DU; Ozer AF
    Proc Inst Mech Eng H; 2016 Jul; 230(7):700-6. PubMed ID: 27107032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cervical spine morphology and ligament property variations: A finite element study of their influence on sagittal bending characteristics.
    John JD; Saravana Kumar G; Yoganandan N
    J Biomech; 2019 Mar; 85():18-26. PubMed ID: 30704760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study.
    Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY
    Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of axial compression and distraction on cervical facet mechanics during anterior shear, flexion, axial rotation, and lateral bending motions.
    Quarrington RD; Costi JJ; Freeman BJC; Jones CF
    J Biomech; 2019 Jan; 83():205-213. PubMed ID: 30554817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Posterior facet load changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    J Spinal Disord Tech; 2012 Jun; 25(4):218-25. PubMed ID: 22652989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit.
    Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2004; 49(1-2):27-32. PubMed ID: 15032495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.