BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12572674)

  • 1. Iron and copper homeostasis and intestinal absorption using the Caco2 cell model.
    Linder MC; Zerounian NR; Moriya M; Malpe R
    Biometals; 2003 Mar; 16(1):145-60. PubMed ID: 12572674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of copper and ceruloplasmin on iron transport in the Caco 2 cell intestinal model.
    Zerounian NR; Linder MC
    J Nutr Biochem; 2002 Mar; 13(3):138-148. PubMed ID: 11893478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IEC-6 cells are an appropriate model of intestinal iron absorption in rats.
    Thomas C; Oates PS
    J Nutr; 2002 Apr; 132(4):680-7. PubMed ID: 11925460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis of copper and iron interactions.
    Sharp P
    Proc Nutr Soc; 2004 Nov; 63(4):563-9. PubMed ID: 15831128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells.
    Arredondo M; Muñoz P; Mura CV; Nùñez MT
    Am J Physiol Cell Physiol; 2003 Jun; 284(6):C1525-30. PubMed ID: 12734107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model.
    Zerounian NR; Redekosky C; Malpe R; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2003 May; 284(5):G739-47. PubMed ID: 12540371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of copper-transporting ATPase 1 (Atp7a) impairs iron flux in fully-differentiated rat (IEC-6) and human (Caco-2) intestinal epithelial cells.
    Ha JH; Doguer C; Collins JF
    Metallomics; 2016 Sep; 8(9):963-972. PubMed ID: 27714044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese.
    Shawki A; Anthony SR; Nose Y; Engevik MA; Niespodzany EJ; Barrientos T; Öhrvik H; Worrell RT; Thiele DJ; Mackenzie B
    Am J Physiol Gastrointest Liver Physiol; 2015 Oct; 309(8):G635-47. PubMed ID: 26294671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake.
    Zimnicka AM; Ivy K; Kaplan JH
    Am J Physiol Cell Physiol; 2011 Mar; 300(3):C588-99. PubMed ID: 21191107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal DMT1 Is Essential for Optimal Assimilation of Dietary Copper in Male and Female Mice with Iron-Deficiency Anemia.
    Wang X; Flores SR; Ha JH; Doguer C; Woloshun RR; Xiang P; Grosche A; Vidyasagar S; Collins JF
    J Nutr; 2018 Aug; 148(8):1244-1252. PubMed ID: 30137476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption.
    Anderson GJ; Frazer DM; McKie AT; Vulpe CD
    Blood Cells Mol Dis; 2002; 29(3):367-75. PubMed ID: 12547227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicular transport of fe and interaction with other metal ions in polarized Caco2 cell monolayers.
    Linder MC; Moriya M; Whon A; Kassa A; Gilley C
    Biol Res; 2006; 39(1):143-56. PubMed ID: 16629174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc, iron, and copper absorption in the streptozotocin-diabetic rat.
    Craft NE; Failla ML
    Am J Physiol; 1983 Feb; 244(2):E122-8. PubMed ID: 6824072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure/function overview of proteins involved in iron storage and transport.
    Sargent PJ; Farnaud S; Evans RW
    Curr Med Chem; 2005; 12(23):2683-93. PubMed ID: 16305465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure.
    Arredondo M; Uauy R; González M
    Biochim Biophys Acta; 2000 Apr; 1474(2):169-76. PubMed ID: 10742596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper overload affects copper and iron metabolism in Hep-G2 cells.
    Arredondo M; Cambiazo V; Tapia L; González-Agüero M; Núñez MT; Uauy R; González M
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G27-32. PubMed ID: 14988066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver.
    Doguer C; Ha JH; Collins JF
    Compr Physiol; 2018 Sep; 8(4):1433-1461. PubMed ID: 30215866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells.
    Ramos D; Mar D; Ishida M; Vargas R; Gaite M; Montgomery A; Linder MC
    PLoS One; 2016; 11(3):e0149516. PubMed ID: 26934375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mediators governing iron-copper interactions.
    Gulec S; Collins JF
    Annu Rev Nutr; 2014; 34():95-116. PubMed ID: 24995690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.