These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12572744)

  • 41. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laser photothermoacoustic heterodyned lock-in depth profilometry in turbid tissue phantoms.
    Fan Y; Mandelis A; Spirou G; Vitkin IA; Whelan WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051908. PubMed ID: 16383646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental and simulated angular profiles of fluorescence and diffuse reflectance emission from turbid media.
    Gebhart SC; Mahadevan-Jansen A; Lin WC
    Appl Opt; 2005 Aug; 44(23):4884-901. PubMed ID: 16114526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Comparative study of reflectance spectroscopy of human laogong acupoint and non-acupoint tissues irradiated by near-infrared laser].
    Zhang ZD; Guo ZY; Wei HJ; Liu HP; Zhong HQ; Yang HQ; Xie SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):2930-3. PubMed ID: 20101956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.
    Huang C; Irwin D; Zhao M; Shang Y; Agochukwu N; Wong L; Yu G
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2068-2076. PubMed ID: 28574345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasound examination of peripheral nerves in the forearm.
    McCartney CJ; Xu D; Constantinescu C; Abbas S; Chan VW
    Reg Anesth Pain Med; 2007; 32(5):434-9. PubMed ID: 17961843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.
    Larsson M; Nilsson H; Strömberg T
    Appl Opt; 2003 Jan; 42(1):124-34. PubMed ID: 12518831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical parameters of embedded abnormalities in tissues as determined by Monte Carlo simulation.
    Jeeva JB; Singh M
    Electromagn Biol Med; 2012 Sep; 31(3):204-12. PubMed ID: 22897401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Reflectance of Human Skin in the Millimeter-Wave Band.
    Owda AY; Salmon N; Casson AJ; Owda M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials.
    Qin J; Lu R
    Appl Opt; 2006 Nov; 45(32):8366-73. PubMed ID: 17068584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical characterization of mammalian tissues by laser reflectometry and Monte Carlo simulation.
    Kumar D; Srinivasan R; Singh M
    Med Eng Phys; 2004 Jun; 26(5):363-9. PubMed ID: 15147744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy.
    Subhash N; Thomas SS; Mallia RJ; Jose M
    Lasers Surg Med; 2005 Oct; 37(4):320-8. PubMed ID: 16180220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study of matching fluid loss in a biomedical microwave tomography system.
    Gilmore C; Zakaria A; LoVetri J; Pistorius S
    Med Phys; 2013 Feb; 40(2):023101. PubMed ID: 23387777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Empirical model for target depth estimation used in the time-domain subsurface imaging.
    Sormaz M; Jenny P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2174-80. PubMed ID: 23201666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vivo 783-channel diffuse reflectance imaging system and its application.
    Yang JM; Han YH; Yoon G; Ahn BS; Lee BC; Soh KS
    Appl Opt; 2007 Aug; 46(23):5991-6003. PubMed ID: 17694155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a portable 3D ultrasound imaging system for musculoskeletal tissues.
    Huang QH; Zheng YP; Lu MH; Chi ZR
    Ultrasonics; 2005 Jan; 43(3):153-63. PubMed ID: 15556650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates.
    Solonenko M; Cheung R; Busch TM; Kachur A; Griffin GM; Vulcan T; Zhu TC; Wang HW; Hahn SM; Yodh AG
    Phys Med Biol; 2002 Mar; 47(6):857-73. PubMed ID: 11936174
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.