BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12573003)

  • 1. Optimization of an acoustic cell filter with a novel air-backflush system.
    Gorenflo VM; Angepat S; Bowen BD; Piret JM
    Biotechnol Prog; 2003; 19(1):30-6. PubMed ID: 12573003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture.
    Gorenflo VM; Smith L; Dedinsky B; Persson B; Piret JM
    Biotechnol Bioeng; 2002 Nov; 80(4):438-44. PubMed ID: 12325152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and optimization of acoustic filter performance by experimental design methodology.
    Gorenflo VM; Ritter JB; Aeschliman DS; Drouin H; Bowen BD; Piret JM
    Biotechnol Bioeng; 2005 Jun; 90(6):746-53. PubMed ID: 15858795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures.
    Shirgaonkar IZ; Lanthier S; Kamen A
    Biotechnol Adv; 2004 Jul; 22(6):433-44. PubMed ID: 15135491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell separator operation within temperature ranges to minimize effects on Chinese hamster ovary cell perfusion culture.
    Drouin H; Ritter JB; Gorenflo VM; Bowen BD; Piret JM
    Biotechnol Prog; 2007; 23(6):1473-84. PubMed ID: 17958442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFD-aided design of a dynamic filter for mammalian cell separation.
    Castilho LR; Anspach FB
    Biotechnol Bioeng; 2003 Sep; 83(5):514-24. PubMed ID: 12827693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical analysis of perfusion bioreactor cell concentration in an acoustic separator.
    Gorenflo VM; Chow VS; Chou C; Piret JM
    Biotechnol Bioeng; 2005 Nov; 92(4):514-8. PubMed ID: 16155953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention and viability characteristics of mammalian cells in an acoustically driven polymer mesh.
    Wang Z; Grabenstetter P; Feke DL; Belovich JM
    Biotechnol Prog; 2004; 20(1):384-7. PubMed ID: 14763867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor.
    Lipscomb ML; Mowry MC; Kompala DS
    Biotechnol Prog; 2004; 20(5):1402-7. PubMed ID: 15458323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells.
    Voisard D; Meuwly F; Ruffieux PA; Baer G; Kadouri A
    Biotechnol Bioeng; 2003 Jun; 82(7):751-65. PubMed ID: 12701141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Cell density, viability, and cell-cycle distribution.
    Dalm MC; Cuijten SM; van Grunsven WM; Tramper J; Martens DE
    Biotechnol Bioeng; 2004 Dec; 88(5):547-57. PubMed ID: 15459904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium.
    Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R
    Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of fluidized bed and ultrasonic cell-retention systems for high cell density mammalian cell culture.
    Dürrschmid MP; Landauer K; Simic G; Klug H; Keijzer T; Trampler F; Oudshoorn A; Gröschl M; Müller D; Doblhoff-Dier O
    Biotechnol Prog; 2003; 19(3):1045-8. PubMed ID: 12790677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system.
    Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system.
    Kim BJ; Chang HN; Oh DJ
    Biotechnol Prog; 2007; 23(5):1186-97. PubMed ID: 17691812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system.
    Huang EP; Marquis CP; Gray PP
    Biotechnol Bioeng; 2004 Nov; 88(4):437-50. PubMed ID: 15459913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous operation of foamed emulsion bioreactors treating toluene vapors.
    Kan E; Deshusses MA
    Biotechnol Bioeng; 2005 Nov; 92(3):364-71. PubMed ID: 16041806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate.
    Dalm MC; Jansen M; Keijzer TM; van Grunsven WM; Oudshoorn A; Tramper J; Martens DE
    Biotechnol Bioeng; 2005 Sep; 91(7):894-900. PubMed ID: 15959892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of factorial design to accelerate identification of CHO growth factor requirements.
    Chun C; Heineken K; Szeto D; Ryll T; Chamow S; Chung JD
    Biotechnol Prog; 2003; 19(1):52-7. PubMed ID: 12573006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.