These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Heterodimer formation between thioredoxin f and fructose 1,6-bisphosphatase from spinach chloroplasts. Balmer Y; Schürmann P FEBS Lett; 2001 Mar; 492(1-2):58-61. PubMed ID: 11248237 [TBL] [Abstract][Full Text] [Related]
5. Sulfitolysis and thioredoxin-dependent reduction reveal the presence of a structural disulfide bridge in spinach chloroplast fructose-1,6-bisphosphatase. Drescher DF; Follmann H; Häberlein I FEBS Lett; 1998 Mar; 424(1-2):109-12. PubMed ID: 9537525 [TBL] [Abstract][Full Text] [Related]
6. A simple procedure for purifying the major chloroplast fructose-1,6-bisphosphatase from spinach (Spinacia oleracea) and characterization of its stimulation by sub-femtomolar mercuric ions. Ashton AR Arch Biochem Biophys; 1998 Sep; 357(2):207-24. PubMed ID: 9735161 [TBL] [Abstract][Full Text] [Related]
9. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents. Huppe HC; Buchanan BB Z Naturforsch C J Biosci; 1989; 44(5-6):487-94. PubMed ID: 11536627 [TBL] [Abstract][Full Text] [Related]
10. Inactivation kinetics of the reduced spinach chloroplast fructose-1,6-bisphosphatase by subtilisin. Chen Y; Wu JW; Xu GJ; Tsou CL; Wang ZX Eur J Biochem; 1997 Sep; 248(3):925-9. PubMed ID: 9342248 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cysteine residues involved in the reductive activation and the structural stability of rapeseed (Brassica napus) chloroplast fructose-1,6-bisphosphatase. Rodriguez-Suarez RJ; Mora-García S; Wolosiuk RA Biochem Biophys Res Commun; 1997 Mar; 232(2):388-93. PubMed ID: 9125187 [TBL] [Abstract][Full Text] [Related]
12. Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes. Hirasawa M; Schürmann P; Jacquot JP; Manieri W; Jacquot P; Keryer E; Hartman FC; Knaff DB Biochemistry; 1999 Apr; 38(16):5200-5. PubMed ID: 10213627 [TBL] [Abstract][Full Text] [Related]
13. Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. Oesterhelt C; Klocke S; Holtgrefe S; Linke V; Weber AP; Scheibe R Plant Cell Physiol; 2007 Sep; 48(9):1359-73. PubMed ID: 17698881 [TBL] [Abstract][Full Text] [Related]
14. Hexosediphosphatase from spinach chloroplasts: purification, crystallization and some properties. El-Badry AM Biochim Biophys Acta; 1974 Feb; 333(2):366-77. PubMed ID: 19400047 [TBL] [Abstract][Full Text] [Related]
15. Properties of oxidized and reduced spinach (Spinacia oleracea) chloroplast fructose-1,6-bisphosphatase activated by various agents. Chardot T; Meunier JC Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):787-91. PubMed ID: 1654892 [TBL] [Abstract][Full Text] [Related]
16. Directed mutagenesis shows that the preceding region of the chloroplast fructose-1,6-bisphosphatase regulatory sequence is the thioredoxin docking site. Sahrawy M; Chueca A; Hermoso R; Lázaro JJ; Gorgé JL J Mol Biol; 1997 Jun; 269(4):623-30. PubMed ID: 9217265 [TBL] [Abstract][Full Text] [Related]