BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12573468)

  • 1. Receptor-type protein tyrosine phosphatase zeta as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons.
    Sakaguchi N; Muramatsu H; Ichihara-Tanaka K; Maeda N; Noda M; Yamamoto T; Michikawa M; Ikematsu S; Sakuma S; Muramatsu T
    Neurosci Res; 2003 Feb; 45(2):219-24. PubMed ID: 12573468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement of chondroitin sulfate/dermatan sulfate recognition in midkine-dependent migration of macrophages.
    Hayashi K; Kadomatsu K; Muramatsu T
    Glycoconj J; 2001 May; 18(5):401-6. PubMed ID: 11925507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase.
    Qi M; Ikematsu S; Maeda N; Ichihara-Tanaka K; Sakuma S; Noda M; Muramatsu T; Kadomatsu K
    J Biol Chem; 2001 May; 276(19):15868-75. PubMed ID: 11340082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine, a heparin-binding growth factor.
    Muramatsu H; Zou P; Suzuki H; Oda Y; Chen GY; Sakaguchi N; Sakuma S; Maeda N; Noda M; Takada Y; Muramatsu T
    J Cell Sci; 2004 Oct; 117(Pt 22):5405-15. PubMed ID: 15466886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration.
    García-Pérez D; Laorden ML; Milanés MV
    Int J Neuropsychopharmacol; 2015 Jul; 19(1):. PubMed ID: 26164717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta.
    Maeda N; Ichihara-Tanaka K; Kimura T; Kadomatsu K; Muramatsu T; Noda M
    J Biol Chem; 1999 Apr; 274(18):12474-9. PubMed ID: 10212223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration.
    Maeda N; Noda M
    J Cell Biol; 1998 Jul; 142(1):203-16. PubMed ID: 9660874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM).
    Maeda N; Nishiwaki T; Shintani T; Hamanaka H; Noda M
    J Biol Chem; 1996 Aug; 271(35):21446-52. PubMed ID: 8702927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute Morphine, Chronic Morphine, and Morphine Withdrawal Differently Affect Pleiotrophin, Midkine, and Receptor Protein Tyrosine Phosphatase β/ζ Regulation in the Ventral Tegmental Area.
    García-Pérez D; Laorden ML; Milanés MV
    Mol Neurobiol; 2017 Jan; 54(1):495-510. PubMed ID: 26742526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons.
    Owada K; Sanjo N; Kobayashi T; Mizusawa H; Muramatsu H; Muramatsu T; Michikawa M
    J Neurochem; 1999 Nov; 73(5):2084-92. PubMed ID: 10537068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule.
    Maeda N; He J; Yajima Y; Mikami T; Sugahara K; Yabe T
    J Biol Chem; 2003 Sep; 278(37):35805-11. PubMed ID: 12840014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomeric midkine induces tumor cell proliferation in the absence of cell-surface proteoglycan binding.
    Qiu L; Escalante CR; Aggarwal AK; Wilson PD; Burrow CR
    Biochemistry; 2000 May; 39(20):5977-87. PubMed ID: 10821669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heparin-binding growth factor midkine: the biological activities and candidate receptors.
    Kadomatsu K; Kishida S; Tsubota S
    J Biochem; 2013 Jun; 153(6):511-21. PubMed ID: 23625998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A heparin-binding growth factor, midkine, binds to a chondroitin sulfate proteoglycan, PG-M/versican.
    Zou K; Muramatsu H; Ikematsu S; Sakuma S; Salama RH; Shinomura T; Kimata K; Muramatsu T
    Eur J Biochem; 2000 Jul; 267(13):4046-53. PubMed ID: 10866805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tyrosine phosphatase inhibitor orthovanadate mimics NGF-induced neuroprotective signaling in rat hippocampal neurons.
    Gerling N; Culmsee C; Klumpp S; Krieglstein J
    Neurochem Int; 2004 Jun; 44(7):505-20. PubMed ID: 15209419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis.
    Muramatsu T
    J Biochem; 2002 Sep; 132(3):359-71. PubMed ID: 12204104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The receptor protein tyrosine phosphatase (RPTP)beta/zeta is expressed in different subtypes of human breast cancer.
    Perez-Pinera P; Garcia-Suarez O; Menendez-Rodriguez P; Mortimer J; Chang Y; Astudillo A; Deuel TF
    Biochem Biophys Res Commun; 2007 Oct; 362(1):5-10. PubMed ID: 17706593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LDL receptor-related protein as a component of the midkine receptor.
    Muramatsu H; Zou K; Sakaguchi N; Ikematsu S; Sakuma S; Muramatsu T
    Biochem Biophys Res Commun; 2000 Apr; 270(3):936-41. PubMed ID: 10772929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of midkine as the basis of its pharmacological effects.
    Muramatsu T
    Br J Pharmacol; 2014 Feb; 171(4):814-26. PubMed ID: 23992440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine.
    Gramage E; Martín YB; Ramanah P; Pérez-García C; Herradón G
    Neuroscience; 2011 Sep; 190():307-17. PubMed ID: 21704677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.