These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12573830)

  • 1. Thorium removal by different adsorbents.
    Metaxas M; Kasselouri-Rigopoulou V; Galiatsatou P; Konstantopoulou C; Oikonomou D
    J Hazard Mater; 2003 Feb; 97(1-3):71-82. PubMed ID: 12573830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of olive mill waste water with activated carbons from agricultural by-products.
    Galiatsatou P; Metaxas M; Arapoglou D; Kasselouri-Rigopoulou V
    Waste Manag; 2002; 22(7):803-12. PubMed ID: 12365783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp.
    Galiatsatou P; Metaxas M; Kasselouri-Rigopoulou V
    J Hazard Mater; 2002 Apr; 91(1-3):187-203. PubMed ID: 11900913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength.
    Payne KB; Abdel-Fattah TM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(9):2275-91. PubMed ID: 15478922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength.
    Payne KB; Abdel-Fattah TM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):723-49. PubMed ID: 15792296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonium removal from high-strength aqueous solutions by Australian zeolite.
    Wijesinghe DT; Dassanayake KB; Sommer SG; Jayasinghe GY; J Scales P; Chen D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(8):614-25. PubMed ID: 27050255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies.
    Anoop Krishnan K; Anirudhan TS
    J Hazard Mater; 2002 May; 92(2):161-83. PubMed ID: 11992701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of carbons derived from Gingelly oil cake for the removal of lead(II) from aqueous solutions.
    Nagashanmugam KB; Srinivasan K
    J Environ Sci Eng; 2010 Oct; 52(4):349-60. PubMed ID: 22312806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption characteristics of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents.
    Humelnicu D; Dinu MV; Drăgan ES
    J Hazard Mater; 2011 Jan; 185(1):447-55. PubMed ID: 20943312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent.
    Kaygun AK; Akyil S
    J Hazard Mater; 2007 Aug; 147(1-2):357-62. PubMed ID: 17292544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions.
    Vassileva P; Voikova D
    J Hazard Mater; 2009 Oct; 170(2-3):948-53. PubMed ID: 19524358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of zirconium from aqueous solution by modified clinoptilolite.
    Faghihian H; Kabiri-Tadi M
    J Hazard Mater; 2010 Jun; 178(1-3):66-73. PubMed ID: 20185237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics.
    Günay A; Arslankaya E; Tosun I
    J Hazard Mater; 2007 Jul; 146(1-2):362-71. PubMed ID: 17261347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.
    Kaynar ÜH; Ayvacıklı M; Hiçsönmez Ü; Kaynar SÇ
    J Environ Radioact; 2015 Dec; 150():145-51. PubMed ID: 26322940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals.
    Wang C; Li J; Sun X; Wang L; Sun X
    J Environ Sci (China); 2009; 21(1):127-36. PubMed ID: 19402411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents.
    Damjanović L; Rakić V; Rac V; Stošić D; Auroux A
    J Hazard Mater; 2010 Dec; 184(1-3):477-484. PubMed ID: 20855165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons.
    Ozçimen D; Ersoy-Meriçboyu A
    J Hazard Mater; 2009 Sep; 168(2-3):1118-25. PubMed ID: 19342167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.
    Nibou D; Mekatel H; Amokrane S; Barkat M; Trari M
    J Hazard Mater; 2010 Jan; 173(1-3):637-46. PubMed ID: 19773115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adsorption of calcium ion from aqueous solution using Na(+)-conditioned clinoptilolite for hot-water softening].
    Zhang S; Wang D; Chen YC; Zhang XW; Chen GJ
    Huan Jing Ke Xue; 2015 Feb; 36(2):744-50. PubMed ID: 26031107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of zinc, copper and lead by natural zeolite-a comparison of adsorption isotherms.
    Perić J; Trgo M; Vukojević Medvidović N
    Water Res; 2004 Apr; 38(7):1893-9. PubMed ID: 15026244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.