These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 12574113)

  • 21. [Mechanisms of regulation by calmodulin of nitric oxide synthase].
    Gervaziev IuV; Sokolov NN
    Vopr Med Khim; 1999; 45(3):187-99. PubMed ID: 10432553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS.
    Shirran S; Garnaud P; Daff S; McMillan D; Barran P
    J R Soc Interface; 2005 Dec; 2(5):465-76. PubMed ID: 16849206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of mammalian nitric oxide synthases by electrostatic interactions in the linker region of calmodulin.
    Spratt DE; Israel OK; Taiakina V; Guillemette JG
    Biochim Biophys Acta; 2008 Dec; 1784(12):2065-70. PubMed ID: 18845278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the Ca2+ -dependent and -independent interactions between calmodulin and its binding domain of inducible nitric oxide synthase.
    Yuan T; Vogel HJ; Sutherland C; Walsh MP
    FEBS Lett; 1998 Jul; 431(2):210-4. PubMed ID: 9708904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of a putative inhibitory element reduces the calcium-dependent calmodulin activation of neuronal nitric-oxide synthase.
    Montgomery HJ; Romanov V; Guillemette JG
    J Biol Chem; 2000 Feb; 275(7):5052-8. PubMed ID: 10671547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase.
    Xia C; Misra I; Iyanagi T; Kim JJ
    J Biol Chem; 2009 Oct; 284(44):30708-17. PubMed ID: 19737939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli.
    Lane P; Gross SS
    J Biol Chem; 2002 May; 277(21):19087-94. PubMed ID: 11839759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the calmodulin-binding domain of rat cerebellar nitric oxide synthase.
    Zhang M; Vogel HJ
    J Biol Chem; 1994 Jan; 269(2):981-5. PubMed ID: 7507114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases.
    Spratt DE; Taiakina V; Guillemette JG
    Biochim Biophys Acta; 2007 Oct; 1774(10):1351-8. PubMed ID: 17890165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inducible nitric oxide synthase requires both the canonical calmodulin-binding domain and additional sequences in order to bind calmodulin and produce nitric oxide in the absence of free Ca2+.
    Ruan J; Xie Qw; Hutchinson N; Cho H; Wolfe GC; Nathan C
    J Biol Chem; 1996 Sep; 271(37):22679-86. PubMed ID: 8798440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the structure and dynamic of calmodulin-nitric oxide synthase complexes using NMR spectroscopy.
    Piazza M; Dieckmann T; Guillemette JG
    Front Biosci (Landmark Ed); 2018 Jun; 23(10):1902-1922. PubMed ID: 29772536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase.
    Garcin ED; Bruns CM; Lloyd SJ; Hosfield DJ; Tiso M; Gachhui R; Stuehr DJ; Tainer JA; Getzoff ED
    J Biol Chem; 2004 Sep; 279(36):37918-27. PubMed ID: 15208315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics of apocalmodulin and nitric oxide synthase II peptide interaction.
    Censarek P; Beyermann M; Koch KW
    FEBS Lett; 2004 Nov; 577(3):465-8. PubMed ID: 15556629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of endothelial nitric oxide synthase by protein kinase C.
    Matsubara M; Hayashi N; Jing T; Titani K
    J Biochem; 2003 Jun; 133(6):773-81. PubMed ID: 12869534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rate, affinity and calcium dependence of nitric oxide synthase isoform binding to the primary physiological regulator calmodulin.
    McMurry JL; Chrestensen CA; Scott IM; Lee EW; Rahn AM; Johansen AM; Forsberg BJ; Harris KD; Salerno JC
    FEBS J; 2011 Dec; 278(24):4943-54. PubMed ID: 22004458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of calmodulin with its binding domain of rat cerebellar nitric oxide synthase. A multinuclear NMR study.
    Zhang M; Yuan T; Aramini JM; Vogel HJ
    J Biol Chem; 1995 Sep; 270(36):20901-7. PubMed ID: 7545663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring the conformations of nitric oxide synthase with fluorescence.
    Arnett DC; Bailey SK; Johnson CK
    Front Biosci (Landmark Ed); 2018 Jun; 23(11):2133-2145. PubMed ID: 29772550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations at lysine 525 of inducible nitric-oxide synthase affect its Ca2+-independent activity.
    Lee SJ; Beckingham K; Stull JT
    J Biol Chem; 2000 Nov; 275(46):36067-72. PubMed ID: 10978319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamics and conformational change governing domain-domain interactions of calmodulin.
    O'Donnell SE; Newman RA; Witt TJ; Hultman R; Froehlig JR; Christensen AP; Shea MA
    Methods Enzymol; 2009; 466():503-26. PubMed ID: 21609874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.