BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12574137)

  • 1. Impaired hypoxic coronary vasodilation and ATP-sensitive potassium channel function: a manifestation of diabetic microangiopathy in humans?
    Weintraub NL
    Circ Res; 2003 Feb; 92(2):127-9. PubMed ID: 12574137
    [No Abstract]   [Full Text] [Related]  

  • 2. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels.
    Miura H; Wachtel RE; Loberiza FR; Saito T; Miura M; Nicolosi AC; Gutterman DD
    Circ Res; 2003 Feb; 92(2):151-8. PubMed ID: 12574142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins.
    Ishizaka H; Gudi SR; Frangos JA; Kuo L
    Circulation; 1999 Feb; 99(4):558-63. PubMed ID: 9927404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of coronary microvascular collaterals to activation of ATP-sensitive K+ channels.
    Lamping KG; Nuno DW; Brooks LA; Fujii M
    Cardiovasc Res; 1997 Aug; 35(2):377-83. PubMed ID: 9349401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary vasodilator responses to RP 52891 are mediated by activation of a glibenclamide-sensitive K+ATP channel.
    Hood JS; McMahon TJ; Kadowitz PJ
    Eur J Pharmacol; 1991 Sep; 202(1):121-4. PubMed ID: 1786798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical oxygen extraction in piglet hindlimb is impaired after inhibition of ATP-sensitive potassium channels.
    Vallet B; Guery B; Mangalaboyi J; Menager P; Curtis SE; Cain SM; Chopin C; Dupuis BA
    Adv Exp Med Biol; 1996; 388():311-7. PubMed ID: 8798828
    [No Abstract]   [Full Text] [Related]  

  • 8. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels.
    Daut J; Maier-Rudolph W; von Beckerath N; Mehrke G; Günther K; Goedel-Meinen L
    Science; 1990 Mar; 247(4948):1341-4. PubMed ID: 2107575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of P1060 and aprikalim on whole-cell currents in rat portal vein; inhibition by glibenclamide and phentolamine.
    Ibbotson T; Edwards G; Noack T; Weston AH
    Br J Pharmacol; 1993 Apr; 108(4):991-8. PubMed ID: 8485637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic relaxation in functionally intact cattle coronary artery segments involves K+ ATP channels.
    Kalsner S
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1219-26. PubMed ID: 8531084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sensitivity of coronary vascular tone to glibenclamide: a study on the isolated perfused guinea pig heart.
    Cyrys S; Daut J
    Cardiovasc Res; 1994 Jun; 28(6):888-93. PubMed ID: 7923296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different types of potassium channels in human skeletal muscle activated by potassium channel openers.
    Quasthoff S; Franke C; Hatt H; Richter-Turtur M
    Neurosci Lett; 1990 Nov; 119(2):191-4. PubMed ID: 2126363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collateral response to activation of potassium channels in vivo.
    Lamping KG
    Basic Res Cardiol; 1998 Apr; 93(2):136-42. PubMed ID: 9601581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitor of ATP-sensitive K+ channel alters neither hypoxic contraction nor relaxation of rat aorta.
    Rodman DM; Hasunuma K; Peach JL; McMurtry IF
    Blood Vessels; 1990; 27(6):365-8. PubMed ID: 2126471
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors.
    Li Q; Puro DG
    Brain Res; 2001 Jul; 907(1-2):93-9. PubMed ID: 11430889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(ATP) channels do not mediate vasodilation by 3-morpholinosydnonimine in goat coronary artery.
    Deka DK; Raviprakash V; Mishra SK
    Eur J Pharmacol; 1997 Jul; 330(2-3):157-64. PubMed ID: 9253949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired relaxation of the carotid artery during activation of ATP-sensitive potassium channels in atherosclerotic monkeys.
    Faraci FM; Orgren K; Heistad DD
    Stroke; 1994 Jan; 25(1):178-82. PubMed ID: 8266368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia.
    Marshall JM; Thomas T; Turner L
    J Physiol; 1993 Dec; 472():1-9. PubMed ID: 8145135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ATP-regulated potassium channel in ischemia-reperfusion injury.
    Gross GJ; Yao Z; Pieper GM; Auchampach JA
    Ann N Y Acad Sci; 1994 Jun; 723():71-81. PubMed ID: 8030926
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.