BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 12574462)

  • 1. Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2003 Feb; 89(2):841-52. PubMed ID: 12574462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2001 Oct; 86(4):1884-98. PubMed ID: 11600648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic responsiveness of neocortical neurons to callosal volleys during paroxysmal depolarizing shifts.
    Cissé Y; Crochet S; Timofeev I; Steriade M
    Neuroscience; 2004; 124(1):231-9. PubMed ID: 14960354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo.
    Grenier F; Timofeev I; Crochet S; Steriade M
    Neuroscience; 2003; 119(1):277-91. PubMed ID: 12763088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
    Neckelmann D; Amzica F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1480-94. PubMed ID: 9744953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast oscillations trigger bursts of action potentials in neocortical neurons in vitro: a quasi-white-noise analysis study.
    Schindler KA; Goodman PH; Wieser HG; Douglas RJ
    Brain Res; 2006 Sep; 1110(1):201-10. PubMed ID: 16879807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy.
    Wang S; Wang IZ; Bulacio JC; Mosher JC; Gonzalez-Martinez J; Alexopoulos AV; Najm IM; So NK
    Epilepsia; 2013 Feb; 54(2):370-6. PubMed ID: 23106394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPSP depression following neocortical seizures in cat.
    Nita DA; Cissé Y; Timofeev I
    Epilepsia; 2008 Apr; 49(4):705-9. PubMed ID: 18031546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus.
    Foffani G; Uzcategui YG; Gal B; Menendez de la Prida L
    Neuron; 2007 Sep; 55(6):930-41. PubMed ID: 17880896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients.
    Urrestarazu E; Chander R; Dubeau F; Gotman J
    Brain; 2007 Sep; 130(Pt 9):2354-66. PubMed ID: 17626037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-dependent slow outlasting activities following neocortical kindling in cats.
    Nita DA; Cissé Y; Timofeev I
    Exp Neurol; 2008 Jun; 211(2):456-68. PubMed ID: 18420200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.
    Amzica F; Steriade M
    J Neurosci; 2000 Sep; 20(17):6648-65. PubMed ID: 10964970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical and thalamic components of neocortical kindling-induced epileptogenesis in behaving cats.
    Nita DA; Cissé Y; Fröhlich F; Timofeev I
    Exp Neurol; 2008 Jun; 211(2):518-28. PubMed ID: 18423621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 2004 Aug; 92(2):1133-43. PubMed ID: 14749320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-frequency analysis of single pulse electrical stimulation to assist delineation of epileptogenic cortex.
    van 't Klooster MA; Zijlmans M; Leijten FS; Ferrier CH; van Putten MJ; Huiskamp GJ
    Brain; 2011 Oct; 134(Pt 10):2855-66. PubMed ID: 21900209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep.
    Mukovski M; Chauvette S; Timofeev I; Volgushev M
    Cereb Cortex; 2007 Feb; 17(2):400-14. PubMed ID: 16547348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ripples in the medial temporal lobe are relevant for human memory consolidation.
    Axmacher N; Elger CE; Fell J
    Brain; 2008 Jul; 131(Pt 7):1806-17. PubMed ID: 18503077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic enhancement induced through callosal pathways in cat association cortex.
    Cissé Y; Crochet S; Timofeev I; Steriade M
    J Neurophysiol; 2004 Dec; 92(6):3221-32. PubMed ID: 15548635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.