These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 125751)
21. Ca2+ activation of membrane-bound (Ca2++Mg2+)-dependent ATPase from human erythrocytes prepared in the presence or absence of Ca2+. Scharff O Biochim Biophys Acta; 1976 Aug; 443(2):206-18. PubMed ID: 133727 [TBL] [Abstract][Full Text] [Related]
22. Effect of dietary fatty acid composition on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat. Williams CM; Maunder K Br J Nutr; 1992 Jul; 68(1):183-93. PubMed ID: 1390603 [TBL] [Abstract][Full Text] [Related]
23. Observations on the (Ca2+ plus Mg2+)-ATPase activator found in various mammalian erythrocytes. Luthra MG; Hildenbrandt GR; Kim HD; Hanahan DJ Biochim Biophys Acta; 1976 Jan; 419(1):180-6. PubMed ID: 128381 [TBL] [Abstract][Full Text] [Related]
25. Effect of dietary fatty acid supplements, varying in fatty acid composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total fatty acids. Stoffel CM; Crump PM; Armentano LE J Dairy Sci; 2015 Jan; 98(1):431-42. PubMed ID: 25468700 [TBL] [Abstract][Full Text] [Related]
26. Differential modulation of rat heart mitochondrial membrane-associated enzymes by dietary lipid. McMurchie EJ; Abeywardena MY; Charnock JS; Gibson RA Biochim Biophys Acta; 1983 Oct; 760(1):13-24. PubMed ID: 6311280 [TBL] [Abstract][Full Text] [Related]
27. [Characteristics of Ca2+ ion effect on the activity of Mg2+-dependent ATPase system in ghosts and reconstituted erythrocytes]. Shevchenko AS; Orlov SN Biokhimiia; 1977 May; 42(5):906-10. PubMed ID: 142524 [TBL] [Abstract][Full Text] [Related]
28. Relationship between rabbit erythrocyte membrane anion-sensitive Mg2+-ATPase and (Ca2+ + Mg2+)-ATPase. Au KS Int J Biochem; 1979; 10(8):687-9. PubMed ID: 159199 [No Abstract] [Full Text] [Related]
29. Dietary long-chain polyunsaturated fatty acids from different sources affect fat and fatty acid excretions in rats. Amate L; Gil A; Ramírez M J Nutr; 2001 Dec; 131(12):3216-21. PubMed ID: 11739869 [TBL] [Abstract][Full Text] [Related]
30. Effect of dietary olive oil, corn oil and medium-chain triglycerides on the lipid composition of rat red blood cell membranes. Periago JL; Suarez MD; Pita ML J Nutr; 1990 Sep; 120(9):986-94. PubMed ID: 2398420 [TBL] [Abstract][Full Text] [Related]
31. Interactive effects of dietary (n-3) polyunsaturated fatty acids and chronic ethanol intoxication on synaptic membrane lipid composition and fluidity in rats. Zérouga M; Beaugé F; Niel E; Durand G; Bourre JM Biochim Biophys Acta; 1991 Nov; 1086(3):295-304. PubMed ID: 1742321 [TBL] [Abstract][Full Text] [Related]
32. The effects of dietary oils on the fatty acid composition and osmotic fragility of rat erythrocytes. Kirchgessner M; Stangl GI; Reichlmayr-Lais AM; Eder K Z Ernahrungswiss; 1994 Jun; 33(2):146-58. PubMed ID: 8079509 [TBL] [Abstract][Full Text] [Related]
33. A water-soluble Mg2+-ATPase from erythrocyte membranes. White MD; Ralston GB Biochim Biophys Acta; 1976 Jul; 436(3):567-76. PubMed ID: 133717 [TBL] [Abstract][Full Text] [Related]
34. Regulation by membrane fluidity of the allosteric behavior of the (Ca2)-adenosine triphosphatase from Escherichia coli. Siñeriz F; Bloj B; Farías RN; Trucco RE J Bacteriol; 1973 Sep; 115(3):723-6. PubMed ID: 4269584 [TBL] [Abstract][Full Text] [Related]
35. Comparison of the uptake and processing of cholesterol from chylomicrons of different fatty acid composition in rats fed high-fat and low-fat diets. Bravo E; Flora L; Cantafora A; De Luca V; Tripodi M; Avella M; Mayes PA; Botham KM Eur J Biochem; 1997 May; 246(1):92-102. PubMed ID: 9210470 [TBL] [Abstract][Full Text] [Related]
36. The effect of fat deprivation on the allosteric inhibition by fluoride of the (Mg2+)-ATPase and (Na+ and K+)-ATPase from rat erythrocytes. Farias RN; Goldemberg AL; Trucco RE Arch Biochem Biophys; 1970 Jul; 139(1):38-44. PubMed ID: 4248575 [No Abstract] [Full Text] [Related]
37. Phospholipid and calmodulin activation of solubilized calcium-transport ATPase from human erythrocytes: regulation by magnesium. Al-Jobore A; Roufogalis BD Can J Biochem; 1981; 59(11-12):880-8. PubMed ID: 6120752 [TBL] [Abstract][Full Text] [Related]
38. A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes. Dependence of an endogenous protein activator distinct from calmodulin. Lotersztajn S; Hanoune J; Pecker F J Biol Chem; 1981 Nov; 256(21):11209-15. PubMed ID: 6116712 [TBL] [Abstract][Full Text] [Related]
39. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations. Mendlein J; Sachs G J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712 [TBL] [Abstract][Full Text] [Related]
40. Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Gopinath RM; Vincenzi FF Biochem Biophys Res Commun; 1977 Aug; 77(4):1203-9. PubMed ID: 197955 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]