These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12576107)

  • 1. A new EM-based training algorithm for RBF networks.
    Lázaro M; Santamaría I; Pantaleón C
    Neural Netw; 2003 Jan; 16(1):69-77. PubMed ID: 12576107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive computation algorithm for RBF neural network.
    Han HG; Qiao JF
    IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):342-7. PubMed ID: 24808512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term prediction of chaotic time series by using RBF network with regression weights.
    Rojas I; Gonzalez J; Cañas A; Diaz AF; Rojas FJ; Rodriguez M
    Int J Neural Syst; 2000 Oct; 10(5):353-64. PubMed ID: 11195935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three learning phases for radial-basis-function networks.
    Schwenker F; Kestler HA; Palm G
    Neural Netw; 2001 May; 14(4-5):439-58. PubMed ID: 11411631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training pi-sigma network by online gradient algorithm with penalty for small weight update.
    Xiong Y; Wu W; Kang X; Zhang C
    Neural Comput; 2007 Dec; 19(12):3356-68. PubMed ID: 17970657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving RBF neural networks for adaptive soft-sensor design.
    Alexandridis A
    Int J Neural Syst; 2013 Dec; 23(6):1350029. PubMed ID: 24156672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks.
    Huang GB; Saratchandran P; Sundararajan N
    IEEE Trans Syst Man Cybern B Cybern; 2004 Dec; 34(6):2284-92. PubMed ID: 15619929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logistic regression by means of evolutionary radial basis function neural networks.
    Gutierrez PA; Hervas-Martinez C; Martinez-Estudillo FJ
    IEEE Trans Neural Netw; 2011 Feb; 22(2):246-63. PubMed ID: 21138802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructive approximation to multivariate function by decay RBF neural network.
    Hou M; Han X
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1517-23. PubMed ID: 20693108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized multiscale radial basis function networks.
    Billings SA; Wei HL; Balikhin MA
    Neural Netw; 2007 Dec; 20(10):1081-94. PubMed ID: 17993257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis applied to the construction of radial basis function networks.
    Shi D; Yeung DS; Gao J
    Neural Netw; 2005 Sep; 18(7):951-7. PubMed ID: 15939573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new algorithm for online structure and parameter adaptation of RBF networks.
    Alexandridis A; Sarimveis H; Bafas G
    Neural Netw; 2003 Sep; 16(7):1003-17. PubMed ID: 14692635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient training of RBF networks for classification.
    Nabney IT
    Int J Neural Syst; 2004 Jun; 14(3):201-8. PubMed ID: 15243952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks.
    Huynh HT; Won Y; Kim JJ
    Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data classification with radial basis function networks based on a novel kernel density estimation algorithm.
    Oyang YJ; Hwang SC; Ou YY; Chen CY; Chen ZW
    IEEE Trans Neural Netw; 2005 Jan; 16(1):225-36. PubMed ID: 15732402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the weight convergence of Elman networks.
    Song Q
    IEEE Trans Neural Netw; 2010 Mar; 21(3):463-80. PubMed ID: 20129857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic determination of radial basis functions: an immunity-based approach.
    de Castro LN; Von Zuben FJ
    Int J Neural Syst; 2001 Dec; 11(6):523-35. PubMed ID: 11852437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.
    Vuković N; Miljković Z
    Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online modeling with tunable RBF network.
    Chen H; Gong Y; Hong X
    IEEE Trans Cybern; 2013 Jun; 43(3):935-47. PubMed ID: 23096075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smooth function approximation using neural networks.
    Ferrari S; Stengel RF
    IEEE Trans Neural Netw; 2005 Jan; 16(1):24-38. PubMed ID: 15732387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.