These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 12576491)

  • 1. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate.
    Gibson JS; Muzyamba MC
    Bioelectrochemistry; 2004 May; 62(2):147-52. PubMed ID: 15039018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of phenazine methosulphate on K+ transport in human red cells.
    Gibson JS; Muzyamba MC; Ellory CJ
    Cell Physiol Biochem; 2003; 13(6):329-36. PubMed ID: 14631139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal permeability pathways in human red blood cells.
    Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS
    Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.
    Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L
    Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dependence of K(+)-Cl- cotransport in human red cell ghosts and sickle cells.
    Khan AI; Drew C; Ball SE; Ball V; Ellory JC; Gibson JS
    Bioelectrochemistry; 2004 May; 62(2):141-6. PubMed ID: 15039017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Gardos channel is responsible for CDNB-induced dense sickle cell formation.
    Shartava A; McIntyre J; Shah AK; Goodman SR
    Am J Hematol; 2000 Jul; 64(3):184-9. PubMed ID: 10861814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives.
    Brugnara C; de Franceschi L; Alper SL
    J Clin Invest; 1993 Jul; 92(1):520-6. PubMed ID: 8326017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dimethyl adipimidate on K+ transport and shape change in red blood cells from sickle cell patients.
    Gibson JS; Stewart GW; Ellory JC
    FEBS Lett; 2000 Sep; 480(2-3):179-83. PubMed ID: 11034324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium ions, drug action and the red cell membrane.
    Wiley JS; McCulloch KE
    Pharmacol Ther; 1982; 18(2):271-92. PubMed ID: 6296889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia.
    Al Balushi HWM; Rees DC; Brewin JN; Hannemann A; Gibson JS
    Physiol Rep; 2018 Mar; 6(5):. PubMed ID: 29504282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cells of a transgenic mouse expressing high levels of human hemoglobin S exhibit deoxy-stimulated cation flux.
    Romero JR; Fabry ME; Suzuka S; Nagel RL; Canessa M
    J Membr Biol; 1997 Oct; 159(3):187-96. PubMed ID: 9312208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O2 dependence of K+ transport in sickle cells: the effect of different cell populations and the substituted benzaldehyde 12C79.
    Gibson JS; Khan A; Speake PF; Ellory JC
    FASEB J; 2001 Mar; 15(3):823-32. PubMed ID: 11259401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of peroxynitrite on passive K+ transport in human red blood cells.
    Kucherenko Y; Browning J; Tattersall A; Ellory JC; Gibson JS
    Cell Physiol Biochem; 2005; 15(6):271-80. PubMed ID: 16037692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments?
    Jensen BS; Strøbaek D; Olesen SP; Christophersen P
    Curr Drug Targets; 2001 Dec; 2(4):401-22. PubMed ID: 11732639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined genetic disruption of K-Cl cotransporters and Gardos channel KCNN4 rescues erythrocyte dehydration in the SAD mouse model of sickle cell disease.
    Shmukler BE; Rivera A; Bhargava P; Nishimura K; Hsu A; Kim EH; Trudel M; Rust MB; Hubner CA; Brugnara C; Alper SL
    Blood Cells Mol Dis; 2019 Nov; 79():102346. PubMed ID: 31352162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium accumulated by sickle cell anemia red cells does not affect their potassium (86Rb+) flux components.
    Ortiz OE; Lew VL; Bookchin RM
    Blood; 1986 Mar; 67(3):710-5. PubMed ID: 2418897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.
    Shmukler BE; Hsu A; Alves J; Trudel M; Rust MB; Hubner CA; Rivera A; Alper SL
    Blood Cells Mol Dis; 2013 Jun; 51(1):9-16. PubMed ID: 23481459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-acetylcysteine and clotrimazole inhibit sickle erythrocyte dehydration induced by 1-chloro-2,4-dinitrobenzene.
    Shartava A; Shah AK; Goodman SR
    Am J Hematol; 1999 Sep; 62(1):19-24. PubMed ID: 10467272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells.
    Etzion Z; Tiffert T; Bookchin RM; Lew VL
    J Clin Invest; 1993 Nov; 92(5):2489-98. PubMed ID: 8227363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.