These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12577261)

  • 21. Understanding the roles of amino acid residues in tertiary structure formation of chignolin by using molecular dynamics simulation.
    Terada T; Satoh D; Mikawa T; Ito Y; Shimizu K
    Proteins; 2008 Nov; 73(3):621-31. PubMed ID: 18473359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Another look at the conditions for the extraction of protein knowledge-based potentials.
    Betancourt MR
    Proteins; 2009 Jul; 76(1):72-85. PubMed ID: 19089977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sequence TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase displays structural ambivalence and interconverts between alpha-helical and beta-hairpin conformations mediated by collapsed conformational states.
    Patel S; Balaji PV; Sasidhar YU
    J Pept Sci; 2007 May; 13(5):314-26. PubMed ID: 17437248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Simulation of alpha-helix and beta-hairpin formation in water-soluble proteins by the code physics method].
    Shestopalov BV
    Tsitologiia; 2007; 49(7):594-600. PubMed ID: 17918344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing equilibration and convergence in biomolecular simulations.
    Smith LJ; Daura X; van Gunsteren WF
    Proteins; 2002 Aug; 48(3):487-96. PubMed ID: 12112673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.
    Tan YH; Huang H; Kihara D
    Proteins; 2006 Aug; 64(3):587-600. PubMed ID: 16799934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting helical segments in proteins by a helix-coil transition theory with parameters derived from a structural database of proteins.
    Misra GP; Wong CF
    Proteins; 1997 Jul; 28(3):344-59. PubMed ID: 9223181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On residues in the disallowed region of the Ramachandran map.
    Pal D; Chakrabarti P
    Biopolymers; 2002 Mar; 63(3):195-206. PubMed ID: 11787007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid propensities for secondary structures are influenced by the protein structural class.
    Costantini S; Colonna G; Facchiano AM
    Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A periodicity analysis of transmembrane helices.
    Leonov H; Arkin IT
    Bioinformatics; 2005 Jun; 21(11):2604-10. PubMed ID: 15746278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures.
    Pellegrini-Calace M; Carotti A; Jones DT
    Proteins; 2003 Mar; 50(4):537-45. PubMed ID: 12577259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the protein structural class by specific peptide frequencies.
    Costantini S; Facchiano AM
    Biochimie; 2009 Feb; 91(2):226-9. PubMed ID: 18957316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature.
    Banerjee R; Chattopadhyay S; Basu G
    Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides.
    Thangudu RR; Vinayagam A; Pugalenthi G; Manonmani A; Offmann B; Sowdhamini R
    Proteins; 2005 Mar; 58(4):866-79. PubMed ID: 15645448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation study on the disordered state of an Alzheimer's beta amyloid peptide Abeta(12 36) in water consisting of random-structural, beta-structural, and helical clusters.
    Ikebe J; Kamiya N; Ito J; Shindo H; Higo J
    Protein Sci; 2007 Aug; 16(8):1596-608. PubMed ID: 17656579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early events in the folding of an amphipathic peptide: A multinanosecond molecular dynamics study.
    Chipot C; Maigret B; Pohorille A
    Proteins; 1999 Sep; 36(4):383-99. PubMed ID: 10450080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.