BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12577288)

  • 1. Addressing the metabolic activation potential of new leads in drug discovery: a case study using ion trap mass spectrometry and tritium labeling techniques.
    Samuel K; Yin W; Stearns RA; Tang YS; Chaudhary AG; Jewell JP; Lanza T; Lin LS; Hagmann WK; Evans DC; Kumar S
    J Mass Spectrom; 2003 Feb; 38(2):211-21. PubMed ID: 12577288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of stable isotope labeled glutathione and rapid scanning mass spectrometers in detecting and characterizing reactive metabolites.
    Mutlib A; Lam W; Atherton J; Chen H; Galatsis P; Stolle W
    Rapid Commun Mass Spectrom; 2005; 19(23):3482-92. PubMed ID: 16261644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of bioactivation of ticlopidine using linear ion trap/orbitrap mass spectrometry and an improved mass defect filtering technique.
    Ruan Q; Zhu M
    Chem Res Toxicol; 2010 May; 23(5):909-17. PubMed ID: 20297803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening and identification of GSH-trapped reactive metabolites using hybrid triple quadruple linear ion trap mass spectrometry.
    Zheng J; Ma L; Xin B; Olah T; Humphreys WG; Zhu M
    Chem Res Toxicol; 2007 May; 20(5):757-66. PubMed ID: 17402749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivation of 2,3-diaminopyridine-containing bradykinin B1 receptor antagonists: irreversible binding to liver microsomal proteins and formation of glutathione conjugates.
    Tang C; Subramanian R; Kuo Y; Krymgold S; Lu P; Kuduk SD; Ng C; Feng DM; Elmore C; Soli E; Ho J; Bock MG; Baillie TA; Prueksaritanont T
    Chem Res Toxicol; 2005 Jun; 18(6):934-45. PubMed ID: 15962928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.
    Masubuchi N; Makino C; Murayama N
    Chem Res Toxicol; 2007 Mar; 20(3):455-64. PubMed ID: 17309281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbiased high-throughput screening of reactive metabolites on the linear ion trap mass spectrometer using polarity switch and mass tag triggered data-dependent acquisition.
    Yan Z; Caldwell GW; Maher N
    Anal Chem; 2008 Aug; 80(16):6410-22. PubMed ID: 18642850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiazolidinedione bioactivation: a comparison of the bioactivation potentials of troglitazone, rosiglitazone, and pioglitazone using stable isotope-labeled analogues and liquid chromatography tandem mass spectrometry.
    Alvarez-Sanchez R; Montavon F; Hartung T; Pähler A
    Chem Res Toxicol; 2006 Aug; 19(8):1106-16. PubMed ID: 16918252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching.
    Leblanc A; Shiao TC; Roy R; Sleno L
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1241-50. PubMed ID: 20391594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic activation of a pyrazinone-containing thrombin inhibitor. Evidence for novel biotransformation involving pyrazinone ring oxidation, rearrangement, and covalent binding to proteins.
    Singh R; Silva Elipe MV; Pearson PG; Arison BH; Wong BK; White R; Yu X; Burgey CS; Lin JH; Baillie TA
    Chem Res Toxicol; 2003 Feb; 16(2):198-207. PubMed ID: 12588191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semiquantitative method for the determination of reactive metabolite conjugate levels in vitro utilizing liquid chromatography-tandem mass spectrometry and novel quaternary ammonium glutathione analogues.
    Soglia JR; Contillo LG; Kalgutkar AS; Zhao S; Hop CE; Boyd JG; Cole MJ
    Chem Res Toxicol; 2006 Mar; 19(3):480-90. PubMed ID: 16544956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic activation of fluoropyrrolidine dipeptidyl peptidase-IV inhibitors by rat liver microsomes.
    Xu S; Zhu B; Teffera Y; Pan DE; Caldwell CG; Doss G; Stearns RA; Evans DC; Beconi MG
    Drug Metab Dispos; 2005 Jan; 33(1):121-30. PubMed ID: 15486074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats.
    Chen Q; Doss GA; Tung EC; Liu W; Tang YS; Braun MP; Didolkar V; Strauss JR; Wang RW; Stearns RA; Evans DC; Baillie TA; Tang W
    Drug Metab Dispos; 2006 Jan; 34(1):145-51. PubMed ID: 16251255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rational chemical intervention strategy to circumvent bioactivation liabilities associated with a nonpeptidyl thrombopoietin receptor agonist containing a 2-amino-4-arylthiazole motif.
    Kalgutkar AS; Driscoll J; Zhao SX; Walker GS; Shepard RM; Soglia JR; Atherton J; Yu L; Mutlib AE; Munchhof MJ; Reiter LA; Jones CS; Doty JL; Trevena KA; Shaffer CL; Ripp SL
    Chem Res Toxicol; 2007 Dec; 20(12):1954-65. PubMed ID: 17935300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of primary and sequential bioactivation pathways of carbamazepine in human liver microsomes using liquid chromatography/tandem mass spectrometry.
    Bu HZ; Zhao P; Dalvie DK; Pool WF
    Rapid Commun Mass Spectrom; 2007; 21(20):3317-22. PubMed ID: 17879390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine.
    Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS
    Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening for glutathione conjugates using stable-isotope labeling and negative electrospray ionization precursor-ion mass spectrometry.
    Liao S; Ewing NP; Boucher B; Materne O; Brummel CL
    Rapid Commun Mass Spectrom; 2012 Mar; 26(6):659-69. PubMed ID: 22328220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of prazosin in rat, dog, and human liver microsomes and cryopreserved rat and human hepatocytes and characterization of metabolites by liquid chromatography/tandem mass spectrometry.
    Erve JC; Vashishtha SC; DeMaio W; Talaat RE
    Drug Metab Dispos; 2007 Jun; 35(6):908-16. PubMed ID: 17353349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism and bioactivation of 3-methylindole by human liver microsomes.
    Yan Z; Easterwood LM; Maher N; Torres R; Huebert N; Yost GS
    Chem Res Toxicol; 2007 Jan; 20(1):140-8. PubMed ID: 17226936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivation of 6,7-dimethyl-2,4-di-1-pyrrolidinyl-7H-pyrrolo[2,3-d]pyrimidine (U-89843) to reactive intermediates that bind covalently to macromolecules and produce genotoxicity.
    Zhao Z; Koeplinger KA; Padbury GE; Hauer MJ; Bundy GL; Banitt LS; Schwartz TM; Zimmermann DC; Harbach PR; Mayo JK; Aaron CS
    Chem Res Toxicol; 1996 Dec; 9(8):1230-9. PubMed ID: 8951224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.