BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 12577301)

  • 1. G1 tetraploidy checkpoint and the suppression of tumorigenesis.
    Margolis RL; Lohez OD; Andreassen PR
    J Cell Biochem; 2003 Mar; 88(4):673-83. PubMed ID: 12577301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy.
    Vogel C; Kienitz A; Hofmann I; Müller R; Bastians H
    Oncogene; 2004 Sep; 23(41):6845-53. PubMed ID: 15286707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells.
    Borel F; Lohez OD; Lacroix FB; Margolis RL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9819-24. PubMed ID: 12119403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of p53 in the response to mitotic spindle damage.
    Meek DW
    Pathol Biol (Paris); 2000 Apr; 48(3):246-54. PubMed ID: 10858957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents.
    Nitta M; Kobayashi O; Honda S; Hirota T; Kuninaka S; Marumoto T; Ushio Y; Saya H
    Oncogene; 2004 Aug; 23(39):6548-58. PubMed ID: 15221012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity.
    Notterman D; Young S; Wainger B; Levine AJ
    Oncogene; 1998 Nov; 17(21):2743-51. PubMed ID: 9840938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest.
    Khan SH; Wahl GM
    Cancer Res; 1998 Feb; 58(3):396-401. PubMed ID: 9458079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor suppressor WARTS ensures genomic integrity by regulating both mitotic progression and G1 tetraploidy checkpoint function.
    Iida S; Hirota T; Morisaki T; Marumoto T; Hara T; Kuninaka S; Honda S; Kosai K; Kawasuji M; Pallas DC; Saya H
    Oncogene; 2004 Jul; 23(31):5266-74. PubMed ID: 15122335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The p53 tumor suppressor participates in multiple cell cycle checkpoints.
    Giono LE; Manfredi JJ
    J Cell Physiol; 2006 Oct; 209(1):13-20. PubMed ID: 16741928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetraploidy and tumor development.
    Margolis RL
    Cancer Cell; 2005 Nov; 8(5):353-4. PubMed ID: 16286243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Telomere dysfunction and loss of p53 cooperate in defective mitotic segregation of chromosomes in cancer cells.
    Pantic M; Zimmermann S; El Daly H; Opitz OG; Popp S; Boukamp P; Martens UM
    Oncogene; 2006 Jul; 25(32):4413-20. PubMed ID: 16547498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53 deficiency exacerbates pleiotropic mitotic defects, changes in nuclearity and polyploidy in transdifferentiating pancreatic acinar cells.
    Sphyris N; Harrison DJ
    Oncogene; 2005 Mar; 24(13):2184-94. PubMed ID: 15735758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitotic checkpoints and the maintenance of the chromosome karyotype.
    Decordier I; Cundari E; Kirsch-Volders M
    Mutat Res; 2008 Mar; 651(1-2):3-13. PubMed ID: 18242118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient tetraploid state.
    Andreassen PR; Martineau SN; Margolis RL
    Mutat Res; 1996 Dec; 372(2):181-94. PubMed ID: 9015137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle checkpoints and their impact on anticancer therapeutic strategies.
    Eastman A
    J Cell Biochem; 2004 Feb; 91(2):223-31. PubMed ID: 14743382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular mechanism regulating effect of anti-cancer agents].
    Saya H
    Gan To Kagaku Ryoho; 2009 Jan; 36(1):1-5. PubMed ID: 19151557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional inactivation of pRB results in aneuploid mammalian cells after release from a mitotic block.
    Lentini L; Pipitone L; Di Leonardo A
    Neoplasia; 2002; 4(5):380-7. PubMed ID: 12192596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitotic checkpoint in cancer and aging: what have mice taught us?
    Baker DJ; Chen J; van Deursen JM
    Curr Opin Cell Biol; 2005 Dec; 17(6):583-9. PubMed ID: 16226453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis.
    Demidenko ZN; Kalurupalle S; Hanko C; Lim CU; Broude E; Blagosklonny MV
    Oncogene; 2008 Jul; 27(32):4402-10. PubMed ID: 18469851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of the nucleolus in activation of the p53-dependent postmitotic checkpoint.
    Tsuchiya M; Katagiri N; Kuroda T; Kishimoto H; Nishimura K; Kumazawa T; Iwasaki N; Kimura K; Yanagisawa J
    Biochem Biophys Res Commun; 2011 Apr; 407(2):378-82. PubMed ID: 21396915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.