These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12577302)

  • 1. Chromatin remodeling as a guide to transcriptional regulatory networks in mammals.
    Urnov FD
    J Cell Biochem; 2003 Mar; 88(4):684-94. PubMed ID: 12577302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors.
    Ren B; Dynlacht BD
    Methods Enzymol; 2004; 376():304-15. PubMed ID: 14975314
    [No Abstract]   [Full Text] [Related]  

  • 4. The transcriptional regulatory code of eukaryotic cells--insights from genome-wide analysis of chromatin organization and transcription factor binding.
    Barrera LO; Ren B
    Curr Opin Cell Biol; 2006 Jun; 18(3):291-8. PubMed ID: 16647254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis.
    Liu S; Mirza A; Wang L
    Methods Mol Biol; 2004; 281():33-54. PubMed ID: 15220520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of genetic and epigenetic regulatory networks using microarrays.
    van Steensel B
    Nat Genet; 2005 Jun; 37 Suppl():S18-24. PubMed ID: 15920525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide location analysis: insights on transcriptional regulation.
    Hawkins RD; Ren B
    Hum Mol Genet; 2006 Apr; 15 Spec No 1():R1-7. PubMed ID: 16651365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomics of gene expression.
    Stamatoyannopoulos JA
    Genomics; 2004 Sep; 84(3):449-57. PubMed ID: 15498452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries.
    Sabo PJ; Humbert R; Hawrylycz M; Wallace JC; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4537-42. PubMed ID: 15070753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional diversity of ISWI complexes.
    Dirscherl SS; Krebs JE
    Biochem Cell Biol; 2004 Aug; 82(4):482-9. PubMed ID: 15284901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental advances in the characterization of metazoan gene regulatory networks.
    Deplancke B
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):12-27. PubMed ID: 19324929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription. Of chips and ChIPs.
    Shannon MF; Rao S
    Science; 2002 Apr; 296(5568):666-9. PubMed ID: 11976432
    [No Abstract]   [Full Text] [Related]  

  • 13. Exploring genetic regulatory networks in metazoan development: methods and models.
    Halfon MS; Michelson AM
    Physiol Genomics; 2002 Sep; 10(3):131-43. PubMed ID: 12209016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Devising transcriptional regulatory networks operating during the cell cycle and differentiation using ChIP-on-chip.
    Blais A; Dynlacht BD
    Chromosome Res; 2005; 13(3):275-88. PubMed ID: 15868421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational biology: toward deciphering gene regulatory information in mammalian genomes.
    Ji H; Wong WH
    Biometrics; 2006 Sep; 62(3):645-63. PubMed ID: 16984301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.
    Lim DA; Suárez-Fariñas M; Naef F; Hacker CR; Menn B; Takebayashi H; Magnasco M; Patil N; Alvarez-Buylla A
    Mol Cell Neurosci; 2006 Jan; 31(1):131-48. PubMed ID: 16330219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation in Drosophila: the post-genome challenge.
    Biggin MD; Tjian R
    Funct Integr Genomics; 2001 Mar; 1(4):223-34. PubMed ID: 11793241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of various genes is controlled by DNA methylation during mammalian development.
    Ehrlich M
    J Cell Biochem; 2003 Apr; 88(5):899-910. PubMed ID: 12616529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.