These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12577939)

  • 1. Possible applications of aquatic bioregenerative life support modules for food production in a Martian base.
    Bluem V; Paris F
    Adv Space Res; 2003; 31(1):77-86. PubMed ID: 12577939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].
    Bluem V; Paris F
    Acta Astronaut; 2001; 48(5-12):287-97. PubMed ID: 11858270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.
    Blum V
    Adv Space Res; 2003; 31(7):1683-91. PubMed ID: 14503506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquatic food production modules in bioregenerative life support systems based on higher plants.
    Bluem V; Paris F
    Adv Space Res; 2001; 27(9):1513-22. PubMed ID: 11695430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal protein production modules in biological life support systems: novel combined aquaculture techniques based on the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.).
    Blum V; Andriske M; Kreuzberg K; Schreibman MP
    Acta Astronaut; 1995; 36(8-12):615-23. PubMed ID: 11540996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (C.E.B.A.S.).
    Bluem V; Paris F
    Acta Astronaut; 2002 Jun; 50(12):775-85. PubMed ID: 12053942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C.E.B.A.S.-Minimodule: behaviour of an artificial aquatic ecological system during spaceflight.
    Bluem V; Andriske M; Paris F; Voeste D
    Adv Space Res; 2000; 26(2):253-62. PubMed ID: 11543160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel laboratory approaches to multi-purpose aquatic bioregenerative closed-loop food production systems.
    Blum V; Andriske M; Kreuzberg K; Paassen U; Schreibman MP; Voeste D
    Acta Astronaut; 1998; 42(1-8):25-35. PubMed ID: 11541608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C.E.B.A.S.-AQUARACK project: the Mini-Module as tool in artificial ecosystem research.
    Blum V; Stretzke E; Kreuzberg K
    Acta Astronaut; 1994 Jul; 33():167-77. PubMed ID: 11539518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The closed equilibrated biological aquatic system: a 12 months test of an artificial aquatic ecosystem.
    Blum V; Andriske M; Ludwig Ch; Paassen U; Voeste D
    Adv Space Res; 1999; 24(3):367-76. PubMed ID: 11542546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.
    Blum V; Andriske M; Eichhorn H; Kreuzberg K; Schreibman MP
    Acta Astronaut; 1995 Oct; 37():361-71. PubMed ID: 11541106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aquatic ecosystem in space.
    Voeste D; Andriske M; Paris F; Levine HG; Blum V
    J Gravit Physiol; 1999 Jul; 6(1):P83-4. PubMed ID: 11543037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Closed Equilibrated Biological Aquatic System: general concept and aspects of botanical research.
    Blum V; Hollander-Czytko H; Voeste D
    Planta; 1997 Sep; 203(Suppl 1):S201-8. PubMed ID: 11540326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C.E.B.A.S. MINI MODULE: test results of an artificial (man-made) aquatic ecosystem.
    Blum V; Kreuzberg K; Stretzke E
    Adv Space Res; 1994 Nov; 14(11):89-98. PubMed ID: 11540223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological-physical-chemical aspects of a human life support system for a lunar base.
    Gitelson JI; Blum V; Grigoriev AI; Lisovsky GM; Manukovsky NS; Sinyak YuE ; Ushakova SA
    Acta Astronaut; 1995 Oct; 37():385-94. PubMed ID: 11541109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mars inflatable greenhouse analog.
    Sadler PD; Giacomelli GA
    Life Support Biosph Sci; 2002; 8(2):115-23. PubMed ID: 11987303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.
    Fu Y; Li L; Xie B; Dong C; Wang M; Jia B; Shao L; Dong Y; Deng S; Liu H; Liu G; Liu B; Hu D; Liu H
    Astrobiology; 2016 Dec; 16(12):925-936. PubMed ID: 27912029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "C.E.B.A.S. MINI-MODULE": a self-sustaining closed aquatic ecosystem for spaceflight experimentation.
    Blum V; Andriske M; Ludwig Ch; Paassen U; Voeste D
    Adv Space Res; 2003; 31(1):201-10. PubMed ID: 12580172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-sustaining Mars colonies utilizing the North Polar Cap and the Martian atmosphere.
    Powell J; Maise G; Paniagua J
    Acta Astronaut; 2001; 48(5-12):737-65. PubMed ID: 11858273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life support for aquatic species--past; present; future.
    Slenzka K
    Adv Space Res; 2002; 30(4):789-95. PubMed ID: 12530367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.