These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12578133)

  • 1. A novel beamformer design method for medical ultrasound. Part I: Theory.
    Ranganathan K; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):15-24. PubMed ID: 12578133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel beamformer design method for medical ultrasound. Part II: Simulation results.
    Ranganathan K; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):25-39. PubMed ID: 12578134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal apodization design for medical ultrasound using constrained least squares part I: theory.
    Guenther DA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):332-42. PubMed ID: 17328330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel transmit aperture for very large depth of focus in medical ultrasound B-scan.
    Zheng Y; Silverstein SD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jun; 53(6):1079-87. PubMed ID: 16846141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic elevation beamforming and image acquisition capabilities using an 8 x 128 1.75D array.
    Fernandez AT; Gammelmark KL; Dahl JJ; Keen CG; Gauss RC; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):40-57. PubMed ID: 12578135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal apodization design for medical ultrasound using constrained least squares part II: simulation results.
    Guenther DA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):343-58. PubMed ID: 17328331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmonic ultrasonic field of medical phased arrays: simulations and measurements.
    Bouakaz A; Lancée CT; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):730-5. PubMed ID: 12839187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral RF image synthesis using a synthetic aperture imaging technique.
    Liebgott H; Basarab A; Gueth P; Cachard C; Delachartre P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2097-103. PubMed ID: 18986907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast parametric beamformer for synthetic aperture imaging.
    Nikolov SI; Jensen JA; Tomov BG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1755-67. PubMed ID: 18986919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multielement synthetic transmit aperture imaging using temporal encoding.
    Gammelmark KL; Jensen JA
    IEEE Trans Med Imaging; 2003 Apr; 22(4):552-63. PubMed ID: 12774901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefits of minimum-variance beamforming in medical ultrasound imaging.
    Synnevag JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1868-79. PubMed ID: 19811990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field computation for two-dimensional array transducers with limited diffraction array beams.
    Lu JY; Cheng J
    Ultrason Imaging; 2005 Oct; 27(4):237-55. PubMed ID: 16761785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.
    Zhao X; Gang T
    Ultrasonics; 2009 Jan; 49(1):126-30. PubMed ID: 18774152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A decimated minimum variance beamformer applied to ultrasound imaging.
    Sakhaei SM
    Ultrasonics; 2015 May; 59():119-27. PubMed ID: 25725814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new synthetic aperture focusing method to suppress the diffraction of ultrasound.
    Chang J; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):327-37. PubMed ID: 21342818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrasonic imaging system based on a new SAFT approach and a GPU beamformer.
    Martín-Arguedas CJ; Romero-Laorden D; Martínez-Graullera O; Pérez-López M; Gómez-Ullate L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1402-12. PubMed ID: 22828836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
    Oralkan O; Ergun AS; Johnson JA; Karaman M; Demirci U; Kaviani K; Lee TH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1596-610. PubMed ID: 12484483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sigma-delta receive beamformer based on cascaded reconstruction for ultrasound imaging application.
    Cheong JH; Lam YY; Tiew KT; Koh LM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1935-46. PubMed ID: 18986890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capon beamforming in medical ultrasound imaging with focused beams.
    Vignon F; Burcher MR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):619-28. PubMed ID: 18407851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.