These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 12578171)
1. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands. Li YR; Huang GH; Li YF; Struger J; Fischer JD Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171 [TBL] [Abstract][Full Text] [Related]
2. Pesticide runoff model (PeRM): a case study for the Kintore Creek Watershed, Ontario, Canada. Li YR; Li YF; Struger J; Chen B; Huang GH J Environ Sci Health B; 2003 May; 38(3):257-73. PubMed ID: 12716044 [TBL] [Abstract][Full Text] [Related]
3. PeLM: modeling of pesticide-losses through runoff and sediment transport. Chen B; Li Y; Huang GH; Huang Y; Li Y J Environ Sci Health B; 2004 May; 39(4):613-26. PubMed ID: 15473641 [TBL] [Abstract][Full Text] [Related]
4. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level. Probst M; Berenzen N; Lentzen-Godding A; Schulz R Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635 [TBL] [Abstract][Full Text] [Related]
5. Predicting pesticide concentrations in river water with a hydrologically calibrated basin-scale runoff model. Matsui Y; Itoshiro S; Buma M; Matsushita T; Hosogoe K; Yuasa A; Shinoda S; Inoue T Water Sci Technol; 2002; 45(9):141-8. PubMed ID: 12079096 [TBL] [Abstract][Full Text] [Related]
6. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. Luo Y; Zhang M J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487 [TBL] [Abstract][Full Text] [Related]
7. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Luo Y; Zhang X; Liu X; Ficklin D; Zhang M Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909 [TBL] [Abstract][Full Text] [Related]
8. Development of a geographical information system for pesticide assessment on an Ecuadorian watershed. Matamoros DE; van Griensven A; van Biesen L; Vanrolleghem PA Water Sci Technol; 2005; 52(12):259-65. PubMed ID: 16477994 [TBL] [Abstract][Full Text] [Related]
9. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model. Nakano Y; Yoshida T; Inoue T Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540 [TBL] [Abstract][Full Text] [Related]
10. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M; Heathman GC; Norton LD; Engel B J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256 [TBL] [Abstract][Full Text] [Related]
11. Input pathways and river load of pesticides in Germany--a national scale modeling assessment. Bach M; Huber A; Frede HG Water Sci Technol; 2001; 43(5):261-8. PubMed ID: 11379140 [TBL] [Abstract][Full Text] [Related]
12. Effects of calibration on L-THIA GIS runoff and pollutant estimation. Lim KJ; Engel BA; Tang Z; Muthukrishnan S; Choi J; Kim K J Environ Manage; 2006 Jan; 78(1):35-43. PubMed ID: 16112801 [TBL] [Abstract][Full Text] [Related]
13. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Berenzen N; Lentzen-Godding A; Probst M; Schulz H; Schulz R; Liess M Chemosphere; 2005 Feb; 58(5):683-91. PubMed ID: 15620762 [TBL] [Abstract][Full Text] [Related]
14. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots. Ma Q; Wauchope RD; Ma L; Rojas KW; Malone RW; Ahuja LR Pest Manag Sci; 2004 Mar; 60(3):267-76. PubMed ID: 15025238 [TBL] [Abstract][Full Text] [Related]
15. Modeling diffuse pollution with a distributed approach. León LF; Soulis ED; Kouwen N; Farquhar GJ Water Sci Technol; 2002; 45(9):149-56. PubMed ID: 12079097 [TBL] [Abstract][Full Text] [Related]
16. Modeling pesticide losses from diffuse sources in Germany. Bach M; Huber A; Frede HG Water Sci Technol; 2001; 44(7):189-96. PubMed ID: 11724487 [TBL] [Abstract][Full Text] [Related]
17. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS. Tsou MS; Zhan XY J Environ Sci (China); 2004; 16(5):865-7. PubMed ID: 15559830 [TBL] [Abstract][Full Text] [Related]
18. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Phillips PJ; Bode RW Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325 [TBL] [Abstract][Full Text] [Related]
19. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants. Chiovarou ED; Siewicki TC Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201 [TBL] [Abstract][Full Text] [Related]
20. Modeling spray drift and runoff-related inputs of pesticides to receiving water. Zhang X; Luo Y; Goh KS Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]