These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Steady flow in models of abdominal aortic aneurysms. Part II: Wall stresses and their implication for in vivo thrombosis and rupture. Peattie RA; Asbury CL; Bluth EI; Riehle TJ J Ultrasound Med; 1996 Oct; 15(10):689-96. PubMed ID: 8887240 [TBL] [Abstract][Full Text] [Related]
7. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Scotti CM; Shkolnik AD; Muluk SC; Finol EA Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141 [TBL] [Abstract][Full Text] [Related]
8. Pulsatile flow in fusiform models of abdoiminal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. Peattie RA; Riehle TJ; Bluth EI J Biomech Eng; 2004 Aug; 126(4):438-46. PubMed ID: 15543861 [TBL] [Abstract][Full Text] [Related]
9. A numerical study of fluid-structure coupled effect of abdominal aortic aneurysm. Cong Y; Wang L; Liu X Biomed Mater Eng; 2015; 26 Suppl 1():S245-55. PubMed ID: 26406009 [TBL] [Abstract][Full Text] [Related]
10. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Khanafer KM; Bull JL; Upchurch GR; Berguer R Ann Vasc Surg; 2007 Jan; 21(1):67-74. PubMed ID: 17349339 [TBL] [Abstract][Full Text] [Related]
11. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms. Li Z; Kleinstreuer C J Med Eng Technol; 2006; 30(5):283-97. PubMed ID: 16980283 [TBL] [Abstract][Full Text] [Related]
13. 2D FSI determination of mechanical stresses on aneurismal walls. Veshkina N; Zbicinski I; StefaĆczyk L Biomed Mater Eng; 2014; 24(6):2519-26. PubMed ID: 25226953 [TBL] [Abstract][Full Text] [Related]
14. Influence of wall compliance on hemodynamics in models of abdominal aortic aneurysm. Gaillard E; Bergeron P; Deplano V J Endovasc Ther; 2007 Aug; 14(4):593-9. PubMed ID: 17696637 [TBL] [Abstract][Full Text] [Related]
15. An investigation of the flow field within patient-specific models of an abdominal aortic aneurysm under steady inflow conditions. O'Rourke MJ; McCullough JP Proc Inst Mech Eng H; 2010; 224(8):971-88. PubMed ID: 20923115 [TBL] [Abstract][Full Text] [Related]
16. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Scotti CM; Jimenez J; Muluk SC; Finol EA Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827 [TBL] [Abstract][Full Text] [Related]
17. Steady flow in models of abdominal aortic aneurysms. Part I: Investigation of the velocity patterns. Peattie RA; Asbury CL; Bluth EI; Ruberti JW J Ultrasound Med; 1996 Oct; 15(10):679-88. PubMed ID: 8887239 [TBL] [Abstract][Full Text] [Related]
18. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms. Lozowy RJ; Kuhn DC; Ducas AA; Boyd AJ Cardiovasc Eng Technol; 2017 Mar; 8(1):57-69. PubMed ID: 27896659 [TBL] [Abstract][Full Text] [Related]
19. Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Vergara C; Le Van D; Quadrio M; Formaggia L; Domanin M Med Eng Phys; 2017 Sep; 47():38-46. PubMed ID: 28709929 [TBL] [Abstract][Full Text] [Related]
20. A simple method of estimating the stress acting on a bilaterally symmetric abdominal aortic aneurysm. Yamada H; Hasegawa Y Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):53-61. PubMed ID: 18651271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]