BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 12578352)

  • 1. The structure, cation binding, transport, and conductance of Gly15-gramicidin A incorporated into SDS micelles and PC/PG vesicles.
    Sham SS; Shobana S; Townsley LE; Jordan JB; Fernandez JQ; Andersen OS; Greathouse DV; Hinton JF
    Biochemistry; 2003 Feb; 42(6):1401-9. PubMed ID: 12578352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles.
    Jordan JB; Easton PL; Hinton JF
    Biophys J; 2005 Jan; 88(1):224-34. PubMed ID: 15501932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glycine substitutions on the structure and function of gramicidin a channels.
    Jordan JB; Shobana S; Andersen OS; Hinton JF
    Biochemistry; 2006 Nov; 45(47):14012-20. PubMed ID: 17115696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neighboring aliphatic/aromatic side chain interactions between residues 9 and 10 in gramicidin channels.
    Koeppe RE; Hatchett J; Jude AR; Providence LL; Andersen OS; Greathouse DV
    Biochemistry; 2000 Mar; 39(9):2235-42. PubMed ID: 10694389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alanine and glycine substitution for tryptophan on the heterogeneity of gramicidin A analogs in micelles.
    Hinton JF; Washburn-McCain AM; Snow A; Douglas J
    J Magn Reson; 1997 Jan; 124(1):132-9. PubMed ID: 9424304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles.
    Townsley LE; Tucker WA; Sham S; Hinton JF
    Biochemistry; 2001 Oct; 40(39):11676-86. PubMed ID: 11570868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. II: nuclear magnetic resonance experiments.
    Vostrikov VV; Gu H; Ingólfsson HI; Hinton JF; Andersen OS; Roux B; Koeppe RE
    J Phys Chem B; 2011 Jun; 115(22):7427-32. PubMed ID: 21574558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation-binding location and hydrogen-exchange sites for gramicidin in SDS micelles using NOESY NMR.
    Hinton JF
    J Magn Reson B; 1996 Jul; 112(1):26-31. PubMed ID: 8661303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations.
    Ingólfsson HI; Li Y; Vostrikov VV; Gu H; Hinton JF; Koeppe RE; Roux B; Andersen OS
    J Phys Chem B; 2011 Jun; 115(22):7417-26. PubMed ID: 21574563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The determination of binding constants of micellar-packaged gramicidin A by 13C-and 23Na-NMR.
    Jing N; Prasad KU; Urry DW
    Biochim Biophys Acta; 1995 Aug; 1238(1):1-11. PubMed ID: 7544622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues.
    Separovic F; Gehrmann J; Milne T; Cornell BA; Lin SY; Smith R
    Biophys J; 1994 Oct; 67(4):1495-500. PubMed ID: 7529584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels.
    Gu H; Lum K; Kim JH; Greathouse DV; Andersen OS; Koeppe RE
    Biochemistry; 2011 Jun; 50(22):4855-66. PubMed ID: 21539360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy.
    Abdul-Manan N; Hinton JF
    Biochemistry; 1994 Jun; 33(22):6773-83. PubMed ID: 7515684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monovalent cation transport: lack of structural deformation upon cation binding.
    Tian F; Lee KC; Hu W; Cross TA
    Biochemistry; 1996 Sep; 35(37):11959-66. PubMed ID: 8810900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General anesthetic binding to gramicidin A: the structural requirements.
    Tang P; Eckenhoff RG; Xu Y
    Biophys J; 2000 Apr; 78(4):1804-9. PubMed ID: 10733961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilizing effect of D-alanine2 in gramicidin channels.
    Mattice GL; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1995 May; 34(20):6827-37. PubMed ID: 7538788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species heterogeneity of Gly-11 gramicidin A incorporated into sodium dodecyl sulfate micelles.
    Hinton JF; Washburn AM
    Biophys J; 1995 Aug; 69(2):435-8. PubMed ID: 8527657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue.
    Oiki S; Koeppe RE; Andersen OS
    Biophys J; 1994 Jun; 66(6):1823-32. PubMed ID: 7521224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.