These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 12578382)
1. Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases. Siemann S; Clarke AJ; Viswanatha T; Dmitrienko GI Biochemistry; 2003 Feb; 42(6):1673-83. PubMed ID: 12578382 [TBL] [Abstract][Full Text] [Related]
2. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. Park H; Brothers EN; Merz KM J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205 [TBL] [Abstract][Full Text] [Related]
3. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams. Badarau A; Page MI Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588 [TBL] [Abstract][Full Text] [Related]
4. Inhibitors of metallo-beta-lactamase generated from beta-lactam antibiotics. Badarau A; Llinás A; Laws AP; Damblon C; Page MI Biochemistry; 2005 Jun; 44(24):8578-89. PubMed ID: 15952764 [TBL] [Abstract][Full Text] [Related]
5. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions. Badarau A; Page MI Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217 [TBL] [Abstract][Full Text] [Related]
7. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O; Balbeur D; Damblon C; Marchot P; De Pauw E; Roberts GC; Frère JM; Matagne A J Mol Biol; 2009 Oct; 392(5):1278-91. PubMed ID: 19665032 [TBL] [Abstract][Full Text] [Related]
8. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
9. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812 [TBL] [Abstract][Full Text] [Related]
11. Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. Liénard BM; Hüting R; Lassaux P; Galleni M; Frère JM; Schofield CJ J Med Chem; 2008 Feb; 51(3):684-8. PubMed ID: 18205296 [TBL] [Abstract][Full Text] [Related]
12. On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis. Wang Z; Fast W; Benkovic SJ Biochemistry; 1999 Aug; 38(31):10013-23. PubMed ID: 10433708 [TBL] [Abstract][Full Text] [Related]
13. Zinc-bound thiolate-disulfide exchange: a strategy for inhibiting metallo-beta-lactamases. Boerzel H; Koeckert M; Bu W; Spingler B; Lippard SJ Inorg Chem; 2003 Mar; 42(5):1604-15. PubMed ID: 12611529 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Liénard BM; Garau G; Horsfall L; Karsisiotis AI; Damblon C; Lassaux P; Papamicael C; Roberts GC; Galleni M; Dideberg O; Frère JM; Schofield CJ Org Biomol Chem; 2008 Jul; 6(13):2282-94. PubMed ID: 18563261 [TBL] [Abstract][Full Text] [Related]
15. The inhibition of metallo-beta-lactamase by thioxo-cephalosporin derivatives. Tsang WY; Dhanda A; Schofield CJ; Frère JM; Galleni M; Page MI Bioorg Med Chem Lett; 2004 Apr; 14(7):1737-9. PubMed ID: 15026061 [TBL] [Abstract][Full Text] [Related]
16. Metallo-β-lactamase-catalyzed hydrolysis of cephalosporins: some mechanistic insights into the effect of heterocyclic thiones on enzyme activity. Tamilselvi A; Mugesh G Inorg Chem; 2011 Feb; 50(3):749-56. PubMed ID: 21210647 [TBL] [Abstract][Full Text] [Related]
17. Irreversible inhibition of metallo-beta-lactamase (IMP-1) by 3-(3-mercaptopropionylsulfanyl)propionic acid pentafluorophenyl ester. Kurosaki H; Yamaguchi Y; Higashi T; Soga K; Matsueda S; Yumoto H; Misumi S; Yamagata Y; Arakawa Y; Goto M Angew Chem Int Ed Engl; 2005 Jun; 44(25):3861-4. PubMed ID: 15892033 [No Abstract] [Full Text] [Related]
18. Inhibition of metallo-beta-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. Payne DJ; Bateson JH; Gasson BC; Khushi T; Proctor D; Pearson SC; Reid R FEMS Microbiol Lett; 1997 Dec; 157(1):171-5. PubMed ID: 9418252 [TBL] [Abstract][Full Text] [Related]
19. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI; Tioni MF; Vila AJ J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306 [TBL] [Abstract][Full Text] [Related]
20. Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. Pellegrini C; Mercuri PS; Celenza G; Galleni M; Segatore B; Sacchetti E; Volpe R; Amicosante G; Perilli M J Antimicrob Chemother; 2009 May; 63(5):901-8. PubMed ID: 19270313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]