These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12578384)

  • 41. Direct photoaffinity labeling of an allosteric site of subunit protein M1 of mouse ribonucleotide reductase by dATP. Evidence for two independent binding interactions within the allosteric specificity site.
    Caras IW; Martin DW
    J Biol Chem; 1982 Aug; 257(16):9508-12. PubMed ID: 7050096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A ribonucleotide reductase from
    Martínez-Carranza M; Jonna VR; Lundin D; Sahlin M; Carlson LA; Jemal N; Högbom M; Sjöberg BM; Stenmark P; Hofer A
    J Biol Chem; 2020 Nov; 295(46):15576-15587. PubMed ID: 32883811
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox studies of subunit interactivity in aerobic ribonucleotide reductase from Escherichia coli.
    Zlateva T; Quaroni L; Que L; Stankovich MT
    J Biol Chem; 2004 Apr; 279(18):18742-7. PubMed ID: 14966112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phylogenetic sequence analysis and functional studies reveal compensatory amino acid substitutions in loop 2 of human ribonucleotide reductase.
    Knappenberger AJ; Grandhi S; Sheth R; Ahmad MF; Viswanathan R; Harris ME
    J Biol Chem; 2017 Oct; 292(40):16463-16476. PubMed ID: 28808063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Cys292-->Ala substitution in protein R1 of class I ribonucleotide reductase from Escherichia coli has a global effect on nucleotide binding at the specificity-determining allosteric site.
    Ormö M; Sjöberg BM
    Eur J Biochem; 1996 Oct; 241(2):363-7. PubMed ID: 8917431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A photoaffinity-labeled allosteric site in Escherichia coli ribonucleotide reductase.
    Eriksson S; Sjöberg BM; Jörnvall H; Carlquist M
    J Biol Chem; 1986 Feb; 261(4):1878-82. PubMed ID: 3511053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein properties of the subunits of ribonucleotide reductase and the specificity of the allosteric site(s).
    Cory JG; Sato A; Brown NC
    Adv Enzyme Regul; 1986; 25():3-19. PubMed ID: 3544706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit.
    Yang F; Curran SC; Li LS; Avarbock D; Graf JD; Chua MM; Lu G; Salem J; Rubin H
    J Bacteriol; 1997 Oct; 179(20):6408-15. PubMed ID: 9335290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-specific replacement of Y356 with 3,4-dihydroxyphenylalanine in the beta2 subunit of E. coli ribonucleotide reductase.
    Seyedsayamdost MR; Stubbe J
    J Am Chem Soc; 2006 Mar; 128(8):2522-3. PubMed ID: 16492021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Site-directed mutagenesis and deletion of the carboxyl terminus of Escherichia coli ribonucleotide reductase protein R2. Effects on catalytic activity and subunit interaction.
    Climent I; Sjöberg BM; Huang CY
    Biochemistry; 1992 May; 31(20):4801-7. PubMed ID: 1591241
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ribonucleotide reductase from Escherichia coli. Identification of allosteric effector sites by chromatography on immobilized effectors.
    von Döbeln U
    Biochemistry; 1977 Oct; 16(20):4368-71. PubMed ID: 334242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process.
    Yee CS; Seyedsayamdost MR; Chang MC; Nocera DG; Stubbe J
    Biochemistry; 2003 Dec; 42(49):14541-52. PubMed ID: 14661967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human ribonucleotide reductase. Activation and inhibition by analogs of ATP.
    Harrington JA; Spector T
    Biochem Pharmacol; 1991 Jul; 42(4):759-63. PubMed ID: 1867633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Allosteric effectors are required for subunit association in T4 phage ribonucleotide reductase.
    Hanson E; Mathews CK
    J Biol Chem; 1994 Dec; 269(49):30999-1005. PubMed ID: 7983036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allosteric control of the substrate specificity of the anaerobic ribonucleotide reductase from Escherichia coli.
    Eliasson R; Pontis E; Sun X; Reichard P
    J Biol Chem; 1994 Oct; 269(42):26052-7. PubMed ID: 7929317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The conserved active site asparagine in class I ribonucleotide reductase is essential for catalysis.
    Kasrayan A; Persson AL; Sahlin M; Sjoberg BM
    J Biol Chem; 2002 Feb; 277(8):5749-55. PubMed ID: 11733508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits.
    Qiu W; Zhou B; Darwish D; Shao J; Yen Y
    Biochem Biophys Res Commun; 2006 Feb; 340(2):428-34. PubMed ID: 16376858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase.
    Larsson KM; Jordan A; Eliasson R; Reichard P; Logan DT; Nordlund P
    Nat Struct Mol Biol; 2004 Nov; 11(11):1142-9. PubMed ID: 15475969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The structural basis for the allosteric regulation of ribonucleotide reductase.
    Ahmad MF; Dealwis CG
    Prog Mol Biol Transl Sci; 2013; 117():389-410. PubMed ID: 23663976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two conserved tyrosine residues in protein R1 participate in an intermolecular electron transfer in ribonucleotide reductase.
    Ekberg M; Sahlin M; Eriksson M; Sjöberg BM
    J Biol Chem; 1996 Aug; 271(34):20655-9. PubMed ID: 8702814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.