These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 12578391)

  • 1. Proposed mechanism and functional amino acid residues of malonyl-CoA:anthocyanin 5-O-glucoside-6'''-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family.
    Suzuki H; Nakayama T; Nishino T
    Biochemistry; 2003 Feb; 42(6):1764-71. PubMed ID: 12578391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases.
    Suzuki H; Sawada S; Watanabe K; Nagae S; Yamaguchi MA; Nakayama T; Nishino T
    Plant J; 2004 Jun; 38(6):994-1003. PubMed ID: 15165190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malonyl-CoA:anthocyanin 5-O-glucoside-6"'-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. Enzyme purification, gene cloning, expression, and characterization.
    Suzuki H; Nakayama T; Yonekura-Sakakibara K; Fukui Y; Nakamura N; Nakao M; Tanaka Y; Yamaguchi MA; Kusumi T; Nishino T
    J Biol Chem; 2001 Dec; 276(52):49013-9. PubMed ID: 11598135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-o-glucoside-6"-o-malonyltransferase from dahlia flowers.
    Suzuki H; Nakayama T; Yonekura-Sakakibara K; Fukui Y; Nakamura N; Yamaguchi MA; Tanaka Y; Kusumi T; Nishino T
    Plant Physiol; 2002 Dec; 130(4):2142-51. PubMed ID: 12481098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the BAHD acyltransferase malonyl CoA: anthocyanidin 5-O-glucoside-6''-O-malonyltransferase (At5MAT) in Arabidopsis thaliana.
    D'Auria JC; Reichelt M; Luck K; Svatos A; Gershenzon J
    FEBS Lett; 2007 Mar; 581(5):872-8. PubMed ID: 17292360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H; Liu L; Hanna PE; Wagner CR
    Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6''-O-malonyltransferase.
    Suzuki H; Nishino T; Nakayama T
    Phytochemistry; 2007 Aug; 68(15):2035-42. PubMed ID: 17602715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
    Jez JM; Ferrer JL; Bowman ME; Dixon RA; Noel JP
    Biochemistry; 2000 Feb; 39(5):890-902. PubMed ID: 10653632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis.
    Unno H; Ichimaida F; Suzuki H; Takahashi S; Tanaka Y; Saito A; Nishino T; Kusunoki M; Nakayama T
    J Biol Chem; 2007 May; 282(21):15812-22. PubMed ID: 17383962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of the enterococcal aminoglycoside 6'-N-acetyltransferase': role of GNAT-conserved residues in the chemistry of antibiotic inactivation.
    Draker KA; Wright GD
    Biochemistry; 2004 Jan; 43(2):446-54. PubMed ID: 14717599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plant type III polyketide synthase that produces pentaketide chromone.
    Abe I; Utsumi Y; Oguro S; Morita H; Sano Y; Noguchi H
    J Am Chem Soc; 2005 Feb; 127(5):1362-3. PubMed ID: 15686354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition.
    Morillas M; Gómez-Puertas P; Bentebibel A; Sellés E; Casals N; Valencia A; Hegardt FG; Asins G; Serra D
    J Biol Chem; 2003 Mar; 278(11):9058-63. PubMed ID: 12499375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site.
    Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG
    J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase.
    Coe DM; Viola RE
    Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula.
    Yu XH; Chen MH; Liu CJ
    Plant J; 2008 Aug; 55(3):382-96. PubMed ID: 18419782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS
    Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6.
    Shallom D; Leon M; Bravman T; Ben-David A; Zaide G; Belakhov V; Shoham G; Schomburg D; Baasov T; Shoham Y
    Biochemistry; 2005 Jan; 44(1):387-97. PubMed ID: 15628881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.