These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 12578395)

  • 1. Trp-999 of beta-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and synthesis of allolactose, the natural lac operon inducer.
    Huber RE; Hakda S; Cheng C; Cupples CG; Edwards RA
    Biochemistry; 2003 Feb; 42(6):1796-803. PubMed ID: 12578395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase.
    Xu J; McRae MA; Harron S; Rob B; Huber RE
    Biochem Cell Biol; 2004 Apr; 82(2):275-84. PubMed ID: 15060622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor.
    Wheatley RW; Lo S; Jancewicz LJ; Dugdale ML; Huber RE
    J Biol Chem; 2013 May; 288(18):12993-3005. PubMed ID: 23486479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis.
    Roth NJ; Rob B; Huber RE
    Biochemistry; 1998 Jul; 37(28):10099-107. PubMed ID: 9665715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop.
    Jancewicz LJ; Wheatley RW; Sutendra G; Lee M; Fraser ME; Huber RE
    Arch Biochem Biophys; 2012 Jan; 517(2):111-22. PubMed ID: 22155115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability.
    Wheatley RW; Kappelhoff JC; Hahn JN; Dugdale ML; Dutkoski MJ; Tamman SD; Fraser ME; Huber RE
    Arch Biochem Biophys; 2012 May; 521(1-2):51-61. PubMed ID: 22446164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase.
    Juers DH; Hakda S; Matthews BW; Huber RE
    Biochemistry; 2003 Nov; 42(46):13505-11. PubMed ID: 14621996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase.
    Zhang Y; Deshpande A; Xie Z; Natesh R; Acharya KR; Brew K
    Glycobiology; 2004 Dec; 14(12):1295-302. PubMed ID: 15229192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trp-262 is a key residue for the hydrolytic and transglucosidic reactivity of the Aspergillus niger family 3 beta-glucosidase: substitution results in enzymes with mainly transglucosidic activity.
    Seidle HF; McKenzie K; Marten I; Shoseyov O; Huber RE
    Arch Biochem Biophys; 2005 Dec; 444(1):66-75. PubMed ID: 16274659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli).
    Dugdale ML; Dymianiw DL; Minhas BK; D'Angelo I; Huber RE
    Biochem Cell Biol; 2010 Oct; 88(5):861-9. PubMed ID: 20921997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-galactosidase (Escherichia coli) has a second catalytically important Mg2+ site.
    Sutendra G; Wong S; Fraser ME; Huber RE
    Biochem Biophys Res Commun; 2007 Jan; 352(2):566-70. PubMed ID: 17126292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL.
    Powl AM; East JM; Lee AG
    Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state.
    Wheatley RW; Huber RE
    Biochem Cell Biol; 2015 Dec; 93(6):531-40. PubMed ID: 26291713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
    Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K
    Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan substitutions surrounding the nucleotide in catalytic sites of F1-ATPase.
    Weber J; Wilke-Mounts S; Hammond ST; Senior AE
    Biochemistry; 1998 Sep; 37(35):12042-50. PubMed ID: 9724515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis.
    Cupples CG; Miller JH; Huber RE
    J Biol Chem; 1990 Apr; 265(10):5512-8. PubMed ID: 1969405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgalactosylation activity of ebg beta-galactosidase synthesizes allolactose from lactose.
    Hall BG
    J Bacteriol; 1982 Apr; 150(1):132-40. PubMed ID: 6801019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of bistability in induction of the Escherichia coli lac operon.
    Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME
    IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS
    Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.