BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 12578558)

  • 21. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
    Huber R; Hof P; Duarte RO; Moura JJ; Moura I; Liu MY; LeGall J; Hille R; Archer M; Romão MJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8846-51. PubMed ID: 8799115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution and pathophysiologic role of molybdenum-containing enzymes.
    Moriwaki Y; Yamamoto T; Higashino K
    Histol Histopathol; 1997 Apr; 12(2):513-24. PubMed ID: 9151140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.
    Schumann S; Terao M; Garattini E; Saggu M; Lendzian F; Hildebrandt P; Leimkühler S
    PLoS One; 2009; 4(4):e5348. PubMed ID: 19401776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xanthine oxidase, a molybdo-flavoprotein.
    GREEN DE; BEINERT H
    Biochim Biophys Acta; 1953 Aug; 11(4):599-600. PubMed ID: 13105695
    [No Abstract]   [Full Text] [Related]  

  • 25. A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase.
    Foti A; Dorendorf F; Leimkühler S
    PLoS One; 2017; 12(7):e0182061. PubMed ID: 28750088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate.
    Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T
    J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone.
    Kurosaki M; Demontis S; Barzago MM; Garattini E; Terao M
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):71-80. PubMed ID: 10377246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation.
    Mintmier B; Nassif S; Stolz JF; Basu P
    J Biol Inorg Chem; 2020 Jun; 25(4):547-569. PubMed ID: 32279136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mouse aldehyde oxidase gene: molecular cloning, chromosomal mapping and functional characterization of the 5'-flanking region.
    Demontis S; Kurosaki M; Saccone S; Motta S; Garattini E; Terao M
    Biochim Biophys Acta; 1999 Dec; 1489(2-3):207-22. PubMed ID: 10673024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine.
    Dobbek H; Gremer L; Meyer O; Huber R
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8884-9. PubMed ID: 10430865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic structure contributions to reactivity in xanthine oxidase family enzymes.
    Stein BW; Kirk ML
    J Biol Inorg Chem; 2015 Mar; 20(2):183-94. PubMed ID: 25425163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family.
    Boer DR; Thapper A; Brondino CD; Romão MJ; Moura JJ
    J Am Chem Soc; 2004 Jul; 126(28):8614-5. PubMed ID: 15250689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turning a monocovalent flavoprotein into a bicovalent flavoprotein by structure-inspired mutagenesis.
    Kopacz MM; Fraaije MW
    Bioorg Med Chem; 2014 Oct; 22(20):5621-7. PubMed ID: 24972727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.
    Canne C; Stephan I; Finsterbusch J; Lingens F; Kappl R; Fetzner S; Hüttermann J
    Biochemistry; 1997 Aug; 36(32):9780-90. PubMed ID: 9245410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-Hydroxyisonicotinate dehydrogenase isolated from Mycobacterium sp. INA1.
    Schräder T; Hillebrand C; Andreesen JR
    FEMS Microbiol Lett; 1998 Jul; 164(2):311-6. PubMed ID: 9682480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molybdenum enzymes in reactions involving aldehydes and acids.
    Romão MJ; Cunha CA; Brondino CD; Moura JJ
    Met Ions Biol Syst; 2002; 39():539-70. PubMed ID: 11913136
    [No Abstract]   [Full Text] [Related]  

  • 37. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics.
    Romão MJ; Coelho C; Santos-Silva T; Foti A; Terao M; Garattini E; Leimkühler S
    Curr Opin Chem Biol; 2017 Apr; 37():39-47. PubMed ID: 28126656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies by electron-paramagnetic-resonance spectroscopy of the molybdenum centre of aldehyde oxidase.
    Bray RC; George GN; Gutteridge S; Norlander L; Stell JG; Stubley C
    Biochem J; 1982 Apr; 203(1):263-7. PubMed ID: 6285895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of aldehyde oxidase and xanthine dehydrogenase/oxidase as possible candidate genes for autosomal recessive familial amyotrophic lateral sclerosis.
    Berger R; Mezey E; Clancy KP; Harta G; Wright RM; Repine JE; Brown RH; Brownstein M; Patterson D
    Somat Cell Mol Genet; 1995 Mar; 21(2):121-31. PubMed ID: 7570184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single amino acid substitution confers high cinchonidine oxidation activity comparable with that of rabbit to monkey aldehyde oxidase 1.
    Fukiya K; Itoh K; Yamaguchi S; Kishiba A; Adachi M; Watanabe N; Tanaka Y
    Drug Metab Dispos; 2010 Feb; 38(2):302-7. PubMed ID: 19910515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.