BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 12578558)

  • 41. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin.
    Ueda O; Sugihara K; Ohta S; Kitamura S
    Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity.
    Mahro M; Brás NF; Cerqueira NM; Teutloff C; Coelho C; Romão MJ; Leimkühler S
    PLoS One; 2013; 8(12):e82285. PubMed ID: 24358164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges.
    Garattini E; Terao M
    Expert Opin Drug Discov; 2013 Jun; 8(6):641-54. PubMed ID: 23565746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components hmARC-1 and hmARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes.
    Wahl B; Reichmann D; Niks D; Krompholz N; Havemeyer A; Clement B; Messerschmidt T; Rothkegel M; Biester H; Hille R; Mendel RR; Bittner F
    J Biol Chem; 2010 Nov; 285(48):37847-59. PubMed ID: 20861021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The human molybdenum hydroxylase gene family: co-conspirators in metabolic free-radical generation and disease.
    Wright RM; Repine JE
    Biochem Soc Trans; 1997 Aug; 25(3):799-804. PubMed ID: 9388549
    [No Abstract]   [Full Text] [Related]  

  • 46. Hydralazine: a potent inhibitor of aldehyde oxidase activity in vitro and in vivo.
    Johnson C; Stubley-Beedham C; Stell JG
    Biochem Pharmacol; 1985 Dec; 34(24):4251-6. PubMed ID: 3841000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The molybdoproteome of Starkeya novella--insights into the diversity and functions of molybdenum containing proteins in response to changing growth conditions.
    Kappler U; Nouwens AS
    Metallomics; 2013 Apr; 5(4):325-34. PubMed ID: 23310928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774.
    Rebelo J; Macieira S; Dias JM; Huber R; Ascenso CS; Rusnak F; Moura JJ; Moura I; Romão MJ
    J Mol Biol; 2000 Mar; 297(1):135-46. PubMed ID: 10704312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of the human aldehyde oxidase (hAOX1) promoter by tandem cooperative Sp1/Sp3 binding sites: identification of complex architecture in the hAOX upstream DNA that includes a proximal promoter, distal activation sites, and a silencer element.
    Wright RM; Riley MG; Weigel LK; Ginger LA; Costantino DA; McManaman JL
    DNA Cell Biol; 2000 Aug; 19(8):459-74. PubMed ID: 10975464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mononuclear molybdenum enzymes.
    Hille R; Hall J; Basu P
    Chem Rev; 2014 Apr; 114(7):3963-4038. PubMed ID: 24467397
    [No Abstract]   [Full Text] [Related]  

  • 51. Subcellular localisation of guinea pig hepatic molybdenum hydroxylases.
    Critchley DJ; Rance DJ; Beedham C
    Biochem Biophys Res Commun; 1992 May; 185(1):54-9. PubMed ID: 1599489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liver aldehyde oxidase and xanthine oxidase genetics in the mouse.
    Holmes RS; Leijten LR; Duley JA
    Anim Blood Groups Biochem Genet; 1981; 12(3):193-9. PubMed ID: 6895582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes.
    Correia MA; Otrelo-Cardoso AR; Schwuchow V; Sigfridsson Clauss KG; Haumann M; Romão MJ; Leimkühler S; Santos-Silva T
    ACS Chem Biol; 2016 Oct; 11(10):2923-2935. PubMed ID: 27622978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The aldox-2 locus of Drosophila melanogaster also affects sulfite oxidase and molybdenum metabolism.
    Bentley MM; Meidinger RG; Braaten AC
    Biochem Genet; 1989 Feb; 27(1-2):99-118. PubMed ID: 2496684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic variation of some aldehyde-oxidizing enzymes in the mouse.
    Lush IE
    Anim Blood Groups Biochem Genet; 1978; 9(2):85-96. PubMed ID: 742739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression.
    Kurosaki M; Bolis M; Fratelli M; Barzago MM; Pattini L; Perretta G; Terao M; Garattini E
    Cell Mol Life Sci; 2013 May; 70(10):1807-30. PubMed ID: 23263164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes.
    Bender D; Schwarz G
    FEBS Lett; 2018 Jun; 592(12):2126-2139. PubMed ID: 29749013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular cloning of retinal oxidase/aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli.
    Huang DY; Furukawa A; Ichikawa Y
    Arch Biochem Biophys; 1999 Apr; 364(2):264-72. PubMed ID: 10190983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flavoenzymes: diverse catalysts with recurrent features.
    Fraaije MW; Mattevi A
    Trends Biochem Sci; 2000 Mar; 25(3):126-32. PubMed ID: 10694883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.