These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12578820)

  • 1. Effects of prostaglandin F2alpha on membrane currents in rabbit middle cerebral arterial smooth muscle cells.
    Kim N; Han J; Kim E
    Am J Physiol Heart Circ Physiol; 2003 Mar; 284(3):H1018-27. PubMed ID: 12578820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane currents in canine bronchial artery and their regulation by excitatory agonists.
    Li QJ; Janssen LJ
    Am J Physiol Lung Cell Mol Physiol; 2002 Jun; 282(6):L1358-65. PubMed ID: 12003793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ketamine blocks Ca2+-activated K+ channels in rabbit cerebral arterial smooth muscle cells.
    Han J; Kim N; Joo H; Kim E
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1347-55. PubMed ID: 12915394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Ca2+-activated K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit.
    Bae YM; Park MK; Lee SH; Ho WK; Earm YE
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):747-58. PubMed ID: 9882747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion channel diversity in the feline smooth muscle esophagus.
    Salapatek AM; Ji J; Diamant NE
    Am J Physiol Gastrointest Liver Physiol; 2002 Feb; 282(2):G288-99. PubMed ID: 11804850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential.
    Ishikawa T; Eckman DM; Keef KD
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1116-22. PubMed ID: 9365823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential activation of potassium channels in cerebral and hindquarter arteries of rats during simulated microgravity.
    Fu ZJ; Xie MJ; Zhang LF; Cheng HW; Ma J
    Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1505-15. PubMed ID: 15142842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4-aminopyridine affects rat arterial smooth muscle BK(Ca) currents by changing intracellular pH.
    Petkova-Kirova P; Gagov H; Krien U; Duridanova D; Noack T; Schubert R
    Br J Pharmacol; 2000 Dec; 131(8):1643-50. PubMed ID: 11139442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of voltage-gated K+ channels and depression of voltage-gated Ca2+ channels are involved in quercetin-induced vasorelaxation in rat coronary artery.
    Hou X; Liu Y; Niu L; Cui L; Zhang M
    Planta Med; 2014 Apr; 80(6):465-72. PubMed ID: 24710898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells.
    Brereton MF; Wareing M; Jones RL; Greenwood SL
    PLoS One; 2013; 8(2):e57451. PubMed ID: 23437391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNAP-25, a SNARE protein, inhibits two types of K channels in esophageal smooth muscle.
    Ji J; Salapatek AM; Lau H; Wang G; Gaisano HY; Diamant NE
    Gastroenterology; 2002 Apr; 122(4):994-1006. PubMed ID: 11910352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular divalent cations block smooth muscle K+ channels.
    Gelband CH; Ishikawa T; Post JM; Keef KD; Hume JR
    Circ Res; 1993 Jul; 73(1):24-34. PubMed ID: 7685253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Block of large conductance Ca(2+)-activated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+.
    Morales E; Cole WC; Remillard CV; Leblane N
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):701-16. PubMed ID: 8887777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of prostaglandin F2α on small intestinal interstitial cells of Cajal.
    Park CG; Kim YD; Kim MY; Koh JW; Jun JY; Yeum CH; So I; Choi S
    World J Gastroenterol; 2011 Mar; 17(9):1143-51. PubMed ID: 21448418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells.
    Krick S; Platoshyn O; Sweeney M; McDaniel SS; Zhang S; Rubin LJ; Yuan JX
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H184-93. PubMed ID: 11748062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of 20-HETE in the hypoxia-induced activation of Ca2+-activated K+ channel currents in rat cerebral arterial muscle cells.
    Gebremedhin D; Yamaura K; Harder DR
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H107-20. PubMed ID: 17906097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of voltage-gated K+ channels in mouse pulmonary artery smooth muscle cells.
    Ko EA; Burg ED; Platoshyn O; Msefya J; Firth AL; Yuan JX
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C928-37. PubMed ID: 17581857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and molecular effects of unoprostone as a BK channel activator.
    Cuppoletti J; Malinowska DH; Tewari KP; Chakrabarti J; Ueno R
    Biochim Biophys Acta; 2007 May; 1768(5):1083-92. PubMed ID: 17307133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization.
    Gelband CH; Hume JR
    Circ Res; 1995 Jul; 77(1):121-30. PubMed ID: 7788870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between membrane potential, delayed rectifier K+ currents and hypoxia in rat pulmonary arterial myocytes.
    Turner JL; Kozlowski RZ
    Exp Physiol; 1997 Jul; 82(4):629-45. PubMed ID: 9257106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.