BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12578824)

  • 1. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli.
    Morita T; El-Kazzaz W; Tanaka Y; Inada T; Aiba H
    J Biol Chem; 2003 May; 278(18):15608-14. PubMed ID: 12578824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli.
    Kimata K; Tanaka Y; Inada T; Aiba H
    EMBO J; 2001 Jul; 20(13):3587-95. PubMed ID: 11432845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli.
    El-Kazzaz W; Morita T; Tagami H; Inada T; Aiba H
    Mol Microbiol; 2004 Feb; 51(4):1117-28. PubMed ID: 14763984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli.
    Kawamoto H; Morita T; Shimizu A; Inada T; Aiba H
    Genes Dev; 2005 Feb; 19(3):328-38. PubMed ID: 15650111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli.
    Morita T; Kawamoto H; Mizota T; Inada T; Aiba H
    Mol Microbiol; 2004 Nov; 54(4):1063-75. PubMed ID: 15522087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants.
    Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K
    Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of ptsG, the gene for the major glucose PTS transporter in Escherichia coli, is repressed by Mlc and induced by growth on glucose.
    Plumbridge J
    Mol Microbiol; 1998 Aug; 29(4):1053-63. PubMed ID: 9767573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.
    Kornberg HL; Lambourne LT; Sproul AA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of glucose transport under oxidative stress in Escherichia coli.
    Rungrassamee W; Liu X; Pomposiello PJ
    Arch Microbiol; 2008 Jul; 190(1):41-9. PubMed ID: 18368388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA.
    Maki K; Morita T; Otaka H; Aiba H
    Mol Microbiol; 2010 May; 76(3):782-92. PubMed ID: 20345651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing human-like collagen accumulation by deleting the major glucose transporter ptsG in recombinant Escherichia coli BL21.
    Luo Y; Zhang T; Fan D; Mu T; Xue W; Hui J; Ma X
    Biotechnol Appl Biochem; 2014; 61(2):237-47. PubMed ID: 24152126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system.
    Vanderpool CK; Gottesman S
    Mol Microbiol; 2004 Nov; 54(4):1076-89. PubMed ID: 15522088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum.
    Engels V; Wendisch VF
    J Bacteriol; 2007 Apr; 189(8):2955-66. PubMed ID: 17293426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide.
    Wadler CS; Vanderpool CK
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20454-9. PubMed ID: 18042713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21).
    Negrete A; Ng WI; Shiloach J
    Microb Cell Fact; 2010 Sep; 9():75. PubMed ID: 20920177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli.
    Schreyer R; Böck A
    J Bacteriol; 1973 Jul; 115(1):268-76. PubMed ID: 4577744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutated PtsG, the glucose transporter, allows uptake of D-ribose.
    Oh H; Park Y; Park C
    J Biol Chem; 1999 May; 274(20):14006-11. PubMed ID: 10318813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.