BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12579532)

  • 1. Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer.
    Tadrous PJ; Siegel J; French PM; Shousha S; Lalani el-N; Stamp GW
    J Pathol; 2003 Mar; 199(3):309-17. PubMed ID: 12579532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin.
    Galletly NP; McGinty J; Dunsby C; Teixeira F; Requejo-Isidro J; Munro I; Elson DS; Neil MA; Chu AC; French PM; Stamp GW
    Br J Dermatol; 2008 Jul; 159(1):152-61. PubMed ID: 18460029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method.
    Pande P; Jo JA
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):172-81. PubMed ID: 20934946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical imaging of human atherosclerotic plaques with fluorescence lifetime angioscopy.
    Thomas P; Pande P; Clubb F; Adame J; Jo JA
    Photochem Photobiol; 2010; 86(3):727-31. PubMed ID: 20331523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence lifetime imaging microscopy: two-dimensional distribution measurement of fluorescence lifetime.
    Fujiwara M; Cieslik W
    Methods Enzymol; 2006; 414():633-42. PubMed ID: 17110215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse.
    Treanor B; Lanigan PM; Suhling K; Schreiber T; Munro I; Neil MA; Phillips D; Davis DM; French PM
    J Microsc; 2005 Jan; 217(Pt 1):36-43. PubMed ID: 15655060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of fluorescence lifetime imaging (FLIM) in latent finger mark detection.
    Seah LK; Wang P; Murukeshan VM; Chao ZX
    Forensic Sci Int; 2006 Jul; 160(2-3):109-14. PubMed ID: 16182484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards metabolic mapping of the human retina.
    Schweitzer D; Schenke S; Hammer M; Schweitzer F; Jentsch S; Birckner E; Becker W; Bergmann A
    Microsc Res Tech; 2007 May; 70(5):410-9. PubMed ID: 17393496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching.
    Lakowicz JR
    Scanning Microsc Suppl; 1996; 10():213-24. PubMed ID: 9601541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo cytometry: a spectrum of possibilities.
    Chung A; Karlan S; Lindsley E; Wachsmann-Hogiu S; Farkas DL
    Cytometry A; 2006 Mar; 69(3):142-6. PubMed ID: 16479602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fluorescence lifetime imaging microscopy (FLIM) in biological and medical research].
    Korczyński J; Włodarczyk J
    Postepy Biochem; 2009; 55(4):434-40. PubMed ID: 20201357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-gated in vivo autofluorescence imaging of dental caries.
    König K; Schneckenburger H; Hibst R
    Cell Mol Biol (Noisy-le-grand); 1999 Mar; 45(2):233-9. PubMed ID: 10230733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image analysis for denoising full-field frequency-domain fluorescence lifetime images.
    Spring BQ; Clegg RM
    J Microsc; 2009 Aug; 235(2):221-37. PubMed ID: 19659915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue.
    Huang Z; Zheng W; Xie S; Chen R; Zeng H; McLean DI; Lui H
    Int J Oncol; 2004 Jan; 24(1):59-63. PubMed ID: 14654941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced autofluorescence measurements on brain tissues.
    Pascu A; Romanitan MO; Delgado JM; Danaila L; Pascu ML
    Anat Rec (Hoboken); 2009 Dec; 292(12):2013-22. PubMed ID: 19943354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences.
    De Giorgi V; Massi D; Sestini S; Cicchi R; Pavone FS; Lotti T
    J Eur Acad Dermatol Venereol; 2009 Mar; 23(3):314-6. PubMed ID: 19207664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.