These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 12579577)

  • 1. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods.
    Gouda H; Kuntz ID; Case DA; Kollman PA
    Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer.
    Freedman H; Huynh LP; Le L; Cheatham TE; Tuszynski JA; Truong TN
    J Phys Chem B; 2010 Feb; 114(6):2227-37. PubMed ID: 20099932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.
    Laitinen T; Kankare JA; Peräkylä M
    Proteins; 2004 Apr; 55(1):34-43. PubMed ID: 14997538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the molecular mechanics poisson-boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase.
    Pearlman DA
    J Med Chem; 2005 Dec; 48(24):7796-807. PubMed ID: 16302819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusually short RNA sequences: design of a 13-mer RNA that selectively binds and recognizes theophylline.
    Anderson PC; Mecozzi S
    J Am Chem Soc; 2005 Apr; 127(15):5290-1. PubMed ID: 15826145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction identification of Zif268 and TATA(ZF) proteins with GC-/AT-rich DNA sequence: A theoretical study.
    Yang B; Zhu Y; Wang Y; Chen G
    J Comput Chem; 2011 Feb; 32(3):416-28. PubMed ID: 20658568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides.
    Pitera JW; Kollman PA
    Proteins; 2000 Nov; 41(3):385-97. PubMed ID: 11025549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM-PBSA method to estimate free energies for reactions in proteins.
    Kaukonen M; Söderhjelm P; Heimdal J; Ryde U
    J Phys Chem B; 2008 Oct; 112(39):12537-48. PubMed ID: 18781715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum sequence requirements for selective RNA-ligand binding: a molecular mechanics algorithm using molecular dynamics and free-energy techniques.
    Anderson PC; Mecozzi S
    J Comput Chem; 2006 Nov; 27(14):1631-40. PubMed ID: 16900493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of a heterogeneous free state in the formation of a specific RNA-theophylline complex.
    Jucker FM; Phillips RM; McCallum SA; Pardi A
    Biochemistry; 2003 Mar; 42(9):2560-7. PubMed ID: 12614150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEARLS: program for energetic analysis of receptor-ligand system.
    Han LY; Lin HH; Li ZR; Zheng CJ; Cao ZW; Xie B; Chen YZ
    J Chem Inf Model; 2006; 46(1):445-50. PubMed ID: 16426079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA.
    Zimmermann GR; Shields TP; Jenison RD; Wick CL; Pardi A
    Biochemistry; 1998 Jun; 37(25):9186-92. PubMed ID: 9636066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA.
    Brown SP; Muchmore SW
    J Chem Inf Model; 2007; 47(4):1493-503. PubMed ID: 17518461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights into 14-membered macrolides using the MM-PBSA method.
    Yam WK; Wahab HA
    J Chem Inf Model; 2009 Jun; 49(6):1558-67. PubMed ID: 19469526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insight into pseudolysin inhibition using the MM-PBSA and LIE methods.
    Adekoya OA; Willassen NP; Sylte I
    J Struct Biol; 2006 Feb; 153(2):129-44. PubMed ID: 16376106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An MM/3D-RISM approach for ligand binding affinities.
    Genheden S; Luchko T; Gusarov S; Kovalenko A; Ryde U
    J Phys Chem B; 2010 Jul; 114(25):8505-16. PubMed ID: 20524650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme.
    Lin JH; Perryman AL; Schames JR; McCammon JA
    Biopolymers; 2003 Jan; 68(1):47-62. PubMed ID: 12579579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.