BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12579658)

  • 21. Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry.
    Lampi KJ; Ma Z; Hanson SR; Azuma M; Shih M; Shearer TR; Smith DL; Smith JB; David LL
    Exp Eye Res; 1998 Jul; 67(1):31-43. PubMed ID: 9702176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Oligomerization of water soluble proteins of rabbit crystalline lens under the action of diamide].
    Babizhaev MA; Men'shikova EV; Ritov VB
    Biull Eksp Biol Med; 1990 Sep; 110(9):269-71. PubMed ID: 2268711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diamide-induced cross-linking of the lens water-soluble proteins as a model of the early oxidative changes during senile cataract formation.
    Babizhayev MA; Menshikova EV
    Mech Ageing Dev; 1990 Dec; 56(3):199-208. PubMed ID: 2089197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phospholipid and protein contents of lens proteolipids in human senile cataract.
    Siddique MA; Tiwary BK; Paul SB
    Eye (Lond); 2010 Apr; 24(4):720-7. PubMed ID: 19590524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Heterogeneity of human cataractous lens low molecular weight crystallins--study of concanavalin A binding proteins by two-dimensional electrophoresis].
    Kodama T; Kodama T
    Nippon Ganka Gakkai Zasshi; 1989 Feb; 93(2):234-8. PubMed ID: 2773705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The state of sulphydryl groups in lenses of insulin-induced hypoglycemic rats.
    Korc I; Montes JM; Osinaga E; Korc de Grodzicki B; Cayota A; Berretta JC
    Metab Pediatr Syst Ophthalmol; 1983; 7(2):81-4. PubMed ID: 6361447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A; Shumiya S; Toshima S; Nakano T
    Jpn J Ophthalmol; 1992; 36(4):417-25. PubMed ID: 1289618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycation of human lens proteins from diabetic and (nondiabetic) senile cataract patients.
    Duhaiman AS
    Glycoconj J; 1995 Oct; 12(5):618-21. PubMed ID: 8595250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Raman study of disulfide and sulfhydryl in the Emory mouse cataract.
    DeNagel DC; Bando M; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):823-6. PubMed ID: 3366572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of gamma D- and gamma s-crystallins in human lenses.
    Srivastava OP; Srivastava K
    Biochem Biophys Res Commun; 1998 Dec; 253(2):288-94. PubMed ID: 9878530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The state of sulfhydryl groups in normal and cataractous human lens proteins. I. Nuclear region.
    Anderson EI; Spector A
    Exp Eye Res; 1978 Apr; 26(4):407-17. PubMed ID: 639888
    [No Abstract]   [Full Text] [Related]  

  • 36. The Emory mouse cataract: loss of soluble protein, glutathione, protein sulfhydryl and other changes.
    Kuck JF; Kuck KD
    Exp Eye Res; 1983 Mar; 36(3):351-62. PubMed ID: 6832231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Change of water-soluble-protein, urea-soluble-protein and membrane intrinsic protein in human senile cataract.
    Zhao H; Hu S; Ren X; Yang J; Sun L
    Yan Ke Xue Bao; 1995 Sep; 11(3):124-7. PubMed ID: 8758837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Biochemical studies on cataractogenesis. Report 3. SDS-gel electrophoresis of human lens protein. (2) Comparison between clear portion and opaque portion of the same lens with senile cuneiform cataract].
    Kimura S; Niwayama M; Hosoyama S
    Nippon Ganka Gakkai Zasshi; 1974 Oct; 78(10):980-8. PubMed ID: 4476999
    [No Abstract]   [Full Text] [Related]  

  • 40. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.