BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12579884)

  • 1. [Transdermal microparticle delivery by a supersonic-Helios gun system].
    Jin Y; Uchida M; Wang CF; Natsume H; Sugibayashi K; Morimoto Y
    Yao Xue Xue Bao; 2001 Feb; 36(2):140-4. PubMed ID: 12579884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdermal microparticle delivery by a supersonic-Helios gun system.
    Yi J; Chao W; Mashaki U; Hideshi N; Yasunori M
    Pharmazie; 2004 Dec; 59(12):934-6. PubMed ID: 15638081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of poly-L-lactic acid microspheres into the skin using supersonic flow: effects of helium gas pressure, particle size and microparticle dose on the amount introduced into hairless rat skin.
    Uchida M; Jin Y; Natsume H; Kobayashi D; Sugibayashi K; Morimoto Y
    J Pharm Pharmacol; 2002 Jun; 54(6):781-90. PubMed ID: 12078994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.
    Uchida M; Natsume H; Kobayashi D; Sugibayashi K; Morimoto Y
    Biol Pharm Bull; 2002 May; 25(5):690-3. PubMed ID: 12033519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between the particle velocity and introduction of drug-loaded microparticles into the skin in a microparticulate bombardment system.
    Uchida M; Natsume H; Seki T; Uchida T; Morimoto Y
    Chem Pharm Bull (Tokyo); 2011; 59(5):662-5. PubMed ID: 21532207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunization by particle bombardment of antigen-loaded poly-(DL-lactide-co-glycolide) microspheres in mice.
    Uchida M; Natsume H; Kishino T; Seki T; Ogihara M; Juni K; Kimura M; Morimoto Y
    Vaccine; 2006 Mar; 24(12):2120-30. PubMed ID: 16356602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly n-butylcyanoacrylate (PNBCA) nanocapsules as a carrier for NSAIDs: in vitro release and in vivo skin penetration.
    Miyazaki S; Takahashi A; Kubo W; Bachynsky J; Löebenberg R
    J Pharm Pharm Sci; 2003; 6(2):238-45. PubMed ID: 12935436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdermal delivery of indomethacin by iontophoresis.
    Kanebako M; Inagi T; Takayama K
    Biol Pharm Bull; 2002 Jun; 25(6):779-82. PubMed ID: 12081146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-sensitive release of indomethacin using lactan-acetate microspheres.
    Na K; Lee KY
    Drug Dev Ind Pharm; 1998 Jun; 24(6):563-8. PubMed ID: 9876624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pulsed output ultrasound on the transdermal absorption of indomethacin from an ointment in rats.
    Asano J; Suisha F; Takada M; Kawasaki N; Miyazaki S
    Biol Pharm Bull; 1997 Mar; 20(3):288-91. PubMed ID: 9084890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transdermal delivery and accumulation of indomethacin in subcutaneous tissues in rats.
    Mikulak SA; Vangsness CT; Nimni ME
    J Pharm Pharmacol; 1998 Feb; 50(2):153-8. PubMed ID: 9530982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin.
    Chen L; Tan F; Wang J; Liu F
    Pharmazie; 2012 Apr; 67(4):319-23. PubMed ID: 22570938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination with l-Menthol Enhances Transdermal Penetration of Indomethacin Solid Nanoparticles.
    Nagai N; Ogata F; Yamaguchi M; Fukuoka Y; Otake H; Nakazawa Y; Kawasaki N
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin.
    Chauhan AS; Sridevi S; Chalasani KB; Jain AK; Jain SK; Jain NK; Diwan PV
    J Control Release; 2003 Jul; 90(3):335-43. PubMed ID: 12880700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled systemic delivery of indomethacin using membrane-moderated, cream formulation-based transdermal devices.
    Rao PR; Chalasani KB; Chauhan AS; Jain AK; Diwan PV; Ram MK
    Drug Deliv; 2006; 13(3):207-13. PubMed ID: 16556573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced absorption of indomethacin after oral or rectal administration of a self-emulsifying system containing indomethacin to rats.
    Kim JY; Ku YS
    Int J Pharm; 2000 Jan; 194(1):81-9. PubMed ID: 10601687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo.
    Tomoda K; Terashima H; Suzuki K; Inagi T; Terada H; Makino K
    Colloids Surf B Biointerfaces; 2012 Apr; 92():50-4. PubMed ID: 22154100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of indomethacin in liposomes.
    Stozek T
    Acta Pol Pharm; 1992; 49(4):21-6. PubMed ID: 16092430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycaprolactone Based Nanoparticles Loaded with Indomethacin for Anti-Inflammatory Therapy: From Preparation to Ex Vivo Study.
    Badri W; Miladi K; Robin S; Viennet C; Nazari QA; Agusti G; Fessi H; Elaissari A
    Pharm Res; 2017 Sep; 34(9):1773-1783. PubMed ID: 28527126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of true nanoemulsions for transdermal potential of indomethacin: characterization, rheological characteristics, and ex vivo skin permeation studies.
    Shakeel F; Ramadan W; Ahmed MA
    J Drug Target; 2009 Jul; 17(6):435-41. PubMed ID: 19527114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.