These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12580171)

  • 1. Recycling efficiencies of C, H, O, N, S, and P elements in a Biological Life Support System based on microorganisms and higher plants.
    Gros JB; Poughon L; Lasseur C; Tikhomirov AA
    Adv Space Res; 2003; 31(1):195-9. PubMed ID: 12580171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MELISSA: a potential experiment for a precursor mission to the Moon.
    Lasseur Ch; Verstraete W; Gros JB; Dubertret G; Rogalla F
    Adv Space Res; 1996; 18(11):111-7. PubMed ID: 11543311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MELISSA: global control strategy of the artificial ecosystem by using first principles models of the compartments.
    Fulget N; Poughon L; Richalet J; Lasseur Ch
    Adv Space Res; 1999; 24(3):397-405. PubMed ID: 11542550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index.
    Wheeler RM
    Adv Space Res; 2003; 31(1):169-75. PubMed ID: 12578002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plants for water recycling, oxygen regeneration and food production.
    Bubenheim DL
    Waste Manag Res; 1991 Oct; 9(5):435-43. PubMed ID: 11537696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling for advanced life support system analysis.
    Drysdale A
    Life Support Biosph Sci; 1997; 4(1-2):21-9. PubMed ID: 11540448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological life support for manned missions by ESA.
    Binot RA; Tamponnet C; Lasseur Ch
    Adv Space Res; 1994 Nov; 14(11):71-4. PubMed ID: 11540220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system.
    Tikhomirov AA; Ushakova SA; Manukovsky NS; Lisovsky GM; Kudenko YA; Kovalev VS; Gribovskaya IV; Tirrannen LS; Zolotukhin IG; Gros JB; Lasseur Ch
    Acta Astronaut; 2003; 53(4-10):249-57. PubMed ID: 14649254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CELSS-3D: a broad computer model simulating a controlled ecological life support system.
    Schneegurt MA; Sherman LA
    Life Support Biosph Sci; 1997; 4(1-2):3-20. PubMed ID: 11540449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass balances for a biological life support system simulation model.
    Volk T; Rummel JD
    Adv Space Res; 1987; 7(4):141-8. PubMed ID: 11537263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using explanatory crop models to develop simple tools for Advanced Life Support system studies.
    Cavazzoni J
    Adv Space Res; 2004; 34(7):1528-38. PubMed ID: 15846882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions.
    Hendrickx L; De Wever H; Hermans V; Mastroleo F; Morin N; Wilmotte A; Janssen P; Mergeay M
    Res Microbiol; 2006; 157(1):77-86. PubMed ID: 16431089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined modeling and experimental approach for achieving a simplified closed ecosystem.
    Turc HA; Pintena J; Bagarri P; Gibiat F; Fabreguettes V
    Adv Space Res; 1999; 24(3):351-60. PubMed ID: 11542544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified ecosystem based on higher plants: ECOSIMP, a model of carbon cycle.
    Andre M; Cournac L; Saugier B; Caloin M
    Acta Astronaut; 1992 Jul; 27():189-96. PubMed ID: 11537586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems.
    Gòdia F; Albiol J; Pérez J; Creus N; Cabello F; Montràs A; Masot A; Lasseur Ch
    Adv Space Res; 2004; 34(7):1483-93. PubMed ID: 15846877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic simulation of the laboratory-scale controlled ecological life support system.
    Finn CK; Srinivasan V
    Life Support Biosph Sci; 1995; 2(2):49-57. PubMed ID: 11538310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources and processing of CELSS wastes.
    Wydeven T; Tremor J; Koo C; Jacquez R
    Adv Space Res; 1989; 9(8):85-97. PubMed ID: 11537395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological-physical-chemical aspects of a human life support system for a lunar base.
    Gitelson JI; Blum V; Grigoriev AI; Lisovsky GM; Manukovsky NS; Sinyak YuE ; Ushakova SA
    Acta Astronaut; 1995 Oct; 37():385-94. PubMed ID: 11541109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS.
    Schneegurt MA; Arieli B; Nielsen SS; Trumbo PR; Sherman LA
    Adv Space Res; 1996; 18(4-5):177-80. PubMed ID: 11538794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NASA tests composters for space.
    Atkinson C
    Biocycle; 1997 Mar; 38(3):47-8. PubMed ID: 11540129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.