These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12580177)

  • 21. Fern spore longevity in saline water: can sea bottom sediments maintain a viable spore bank?
    de Groot GA; During H
    PLoS One; 2013; 8(11):e79470. PubMed ID: 24223951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First results from conservation studies of chlorophyllous spores of the Royal fern (Osmunda regalis, Osmundaceae).
    Magrini S; Scoppola A
    Cryobiology; 2012 Feb; 64(1):65-9. PubMed ID: 22037613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spore Preparation and Protoplast Isolation to Study Gravity Perception and Response in Ceratopteris richardii.
    Cannon AE; Sabharwal T; Roux SJ
    Methods Mol Biol; 2022; 2368():53-60. PubMed ID: 34647247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cryopreservation strategies for Cyathea australis (R. BR.) domin.
    Mikuła A; Jata K; Rybczyński JJ
    Cryo Letters; 2009; 30(6):429-39. PubMed ID: 20309499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function of CrACA1, the major PM-type Ca2+-ATPase, expressed at the peak of the gravity-directed trans-cell calcium current in spores of the fern Ceratopteris richardii.
    Bushart TJ; Cannon A; Clark G; Roux SJ
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():151-7. PubMed ID: 24373013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and lignification in seedlings exposed to eight days of microgravity.
    Cowles JR; Scheld HW; Lemay R; Peterson C
    Ann Bot; 1984; 54(Suppl 3):33-48. PubMed ID: 11539752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calbindins decreased after space flight.
    Sergeev IN; Rhoten WB; Carney MD
    Endocrine; 1996 Dec; 5(3):335-40. PubMed ID: 11539285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can fern spores develop hydration memory in response to priming?
    Pedrero-López LV; Pérez-García B; Mehltreter K; Sánchez-Coronado ME; Orozco-Segovia A
    J Plant Physiol; 2019 Jan; 232():284-290. PubMed ID: 30544053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autonomic straightening of gravitropically curved cress roots in microgravity.
    Stankovic B; Antonsen F; Johnsson A; Volkmann D; Sack FD
    Adv Space Res; 2001; 27(5):915-9. PubMed ID: 11594376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiation of Dictyostelium discoideum vegetative cells into spores during Earth orbit in space.
    Takahashi A; Ohnishi K; Takahashi S; Masukawa M; Sekikawa K; Amano T; Nakano T; Nagaoka S; Ohnishi T
    Adv Space Res; 2001; 28(4):549-53. PubMed ID: 11799987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current.
    Salmi ML; ul Haque A; Bushart TJ; Stout SC; Roux SJ; Porterfield DM
    Planta; 2011 May; 233(5):911-20. PubMed ID: 21234599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Gravitational Plant Physiology Facility--description of equipment developed for biological research in Spacelab.
    Heathcote DG; Chapman DK; Brown AH; Lewis RF
    Microgravity Sci Technol; 1994 Sep; 7(3):270-5. PubMed ID: 11541487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studying molecular changes during gravity perception and response in a single cell.
    Cannon AE; Salmi ML; Bushart TJ; Roux SJ
    Methods Mol Biol; 2015; 1309():199-207. PubMed ID: 25981777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development studies of Aurelia (jellyfish) ephyrae which developed during the SLS-1 mission.
    Spangenberg DB; Jernigan T; McCombs R; Lowe BT; Sampson M; Slusser J
    Adv Space Res; 1994; 14(8):239-47. PubMed ID: 11537923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early quantitative method for measuring germination in non-green spores of Dryopteris paleacea using an epifluorescence-microscope technique.
    Scheuerlein R; Wayne R; Roux SJ
    Physiol Plant; 1988; 73(4):505-11. PubMed ID: 11539034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of moisture content for wheat seedling germination in a cellulose acetate medium for a space flight experiment.
    Johnson CF; Dreschel TW; Brown CS; Wheeler RM
    Adv Space Res; 1996; 18(4-5):239-42. PubMed ID: 11538804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosomes and plant cell division in space: environmental conditions and experimental details.
    Levine HG; Krikorian AD
    Adv Space Res; 1992; 12(1):73-82. PubMed ID: 11536992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight.
    Kern VD; Schwuchow JM; Reed DW; Nadeau JA; Lucas J; Skripnikov A; Sack FD
    Planta; 2005 Apr; 221(1):149-57. PubMed ID: 15660206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae).
    Ekrt L; Koutecký P
    Ann Bot; 2016 Jan; 117(1):97-106. PubMed ID: 26476395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.