These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 12580213)
1. Monitoring of isoflurane and desflurane breakdown: interfering gases and infrared detection. Woehlck H; Dunning MB; Nithipatikom K J Clin Monit Comput; 2000; 16(7):535-40. PubMed ID: 12580213 [TBL] [Abstract][Full Text] [Related]
2. The response of anesthetic agent monitors to trifluoromethane warns of the presence of carbon monoxide from anesthetic breakdown. Woehlck HJ; Dunning MB; Kulier AH; Sasse FJ; Nithipataikom K; Henry DW J Clin Monit; 1997 May; 13(3):149-55. PubMed ID: 9234084 [TBL] [Abstract][Full Text] [Related]
3. Mass spectrometry provides warning of carbon monoxide exposure via trifluoromethane. Woehick HJ; Dunning M; Nithipatikom K; Kulier AH; Henry DW Anesthesiology; 1996 Jun; 84(6):1489-93. PubMed ID: 8669691 [TBL] [Abstract][Full Text] [Related]
4. Performance of an electrochemical carbon monoxide monitor in the presence of anesthetic gases. Dunning M; Woehlck HJ J Clin Monit; 1997 Nov; 13(6):357-62. PubMed ID: 9495287 [TBL] [Abstract][Full Text] [Related]
5. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Baxter PJ; Kharasch ED Anesthesiology; 1997 May; 86(5):1061-5. PubMed ID: 9158355 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Amsorb, sodalime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound a in swine in vivo. Kharasch ED; Powers KM; Artru AA Anesthesiology; 2002 Jan; 96(1):173-82. PubMed ID: 11753018 [TBL] [Abstract][Full Text] [Related]
7. Physical factors affecting the production of carbon monoxide from anesthetic breakdown. Woehlck HJ; Dunning M; Raza T; Ruiz F; Bolla B; Zink W Anesthesiology; 2001 Mar; 94(3):453-6. PubMed ID: 11374605 [TBL] [Abstract][Full Text] [Related]
8. Low-flow anesthesia and reduced animal size increase carboxyhemoglobin levels in swine during desflurane and isoflurane breakdown in dried soda lime. Bonome C; Belda J; Alvarez-Refojo F; Soro M; Fernández-Goti C; Cortés A Anesth Analg; 1999 Oct; 89(4):909-16. PubMed ID: 10607409 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of the contributions by fresh gas flow rate, carbon dioxide concentration and desflurane partial pressure to carbon monoxide concentration during low fresh gas flows to a circle anaesthetic breathing system. Fan SZ; Lin YW; Chang WS; Tang CS Eur J Anaesthesiol; 2008 Aug; 25(8):620-6. PubMed ID: 18339215 [TBL] [Abstract][Full Text] [Related]
10. Detection of carbon monoxide production as a result of the interaction of five volatile anesthetics and desiccated sodalime with an electrochemical carbon monoxide sensor in an anesthetic circuit compared to gas chromatography. Keijzer C; Perez RS; de Lange JJ J Clin Monit Comput; 2007 Aug; 21(4):257-64. PubMed ID: 17597416 [TBL] [Abstract][Full Text] [Related]
11. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents. Frink EJ; Nogami WM; Morgan SE; Salmon RC Anesthesiology; 1997 Aug; 87(2):308-16. PubMed ID: 9286895 [TBL] [Abstract][Full Text] [Related]
12. Carboxyhemoglobin concentrations during desflurane and isoflurane closed-circuit anesthesia. Hendrickx JF; Soetens M; De Vel M; Van der Aa P; De Wolf AM Acta Anaesthesiol Belg; 1996; 47(2):67-72. PubMed ID: 8869673 [TBL] [Abstract][Full Text] [Related]
13. Important role of calcium chloride in preventing carbon monoxide generation during desflurane degradation with alkali hydroxide-free carbon dioxide absorbents. Ando T; Mori A; Ito R; Nishiwaki K J Anesth; 2017 Dec; 31(6):911-914. PubMed ID: 28831619 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic aspects of carbon monoxide formation from volatile anesthetics. Baxter PJ; Garton K; Kharasch ED Anesthesiology; 1998 Oct; 89(4):929-41. PubMed ID: 9778011 [TBL] [Abstract][Full Text] [Related]
15. Carbon monoxide production from sevoflurane breakdown: modeling of exposures under clinical conditions. Holak EJ; Mei DA; Dunning MB; Gundamraj R; Noseir R; Zhang L; Woehlck HJ Anesth Analg; 2003 Mar; 96(3):757-764. PubMed ID: 12598259 [TBL] [Abstract][Full Text] [Related]
16. Carbon monoxide production from desflurane and six types of carbon dioxide absorbents in a patient model. Keijzer C; Perez RS; de Lange JJ Acta Anaesthesiol Scand; 2005 Jul; 49(6):815-8. PubMed ID: 15954965 [TBL] [Abstract][Full Text] [Related]
17. Mathematical modeling of carbon monoxide exposures from anesthetic breakdown: effect of subject size, hematocrit, fraction of inspired oxygen, and quantity of carbon monoxide. Woehlck HJ; Mei D; Dunning MB; Ruiz F Anesthesiology; 2001 Mar; 94(3):457-60. PubMed ID: 11374606 [TBL] [Abstract][Full Text] [Related]
18. Absorbents differ enormously in their capacity to produce compound A and carbon monoxide. Stabernack CR; Brown R; Laster MJ; Dudziak R; Eger EI Anesth Analg; 2000 Jun; 90(6):1428-35. PubMed ID: 10825335 [TBL] [Abstract][Full Text] [Related]
19. Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurane with dry soda lime. Wissing H; Kuhn I; Warnken U; Dudziak R Anesthesiology; 2001 Nov; 95(5):1205-12. PubMed ID: 11684991 [TBL] [Abstract][Full Text] [Related]
20. Erroneous mass spectrometer readings caused by desflurane and sevoflurane. Abel M; Eisenkraft JB J Clin Monit; 1995 May; 11(3):152-8. PubMed ID: 7623053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]