These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12580284)
21. Occurrence, transfer and mobilization in epilithic strains of Acinetobacter of mercury-resistance plasmids capable of transformation. Rochelle PA; Day MJ; Fry JC J Gen Microbiol; 1988 Nov; 134(11):2933-41. PubMed ID: 3254940 [TBL] [Abstract][Full Text] [Related]
22. The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. de Vries J; Meier P; Wackernagel W FEMS Microbiol Lett; 2001 Feb; 195(2):211-5. PubMed ID: 11179654 [TBL] [Abstract][Full Text] [Related]
23. Influence of flanking homology and insert size on the transformation frequency of Acinetobacter baylyi BD413. Simpson DJ; Dawson LF; Fry JC; Rogers HJ; Day MJ Environ Biosafety Res; 2007; 6(1-2):55-69. PubMed ID: 17961480 [TBL] [Abstract][Full Text] [Related]
24. Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Gebhard F; Smalla K Appl Environ Microbiol; 1998 Apr; 64(4):1550-4. PubMed ID: 9546192 [TBL] [Abstract][Full Text] [Related]
25. Natural transformation in Acinetobacter calcoaceticus. Shanley MS; Ahmadian-Tehrani M; Benjamin RC; Leher HF SAAS Bull Biochem Biotechnol; 1990 Jan; 3():27-31. PubMed ID: 1366417 [TBL] [Abstract][Full Text] [Related]
26. Transfer of genetic information from agrobacteria to bacterial and plant cells: membrane and supramembrane structures involved in transfer. Chumakov MI Membr Cell Biol; 2000; 14(3):309-31. PubMed ID: 11368493 [TBL] [Abstract][Full Text] [Related]
27. Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Bertolla F; Pepin R; Passelegue-Robe E; Paget E; Simkin A; Nesme X; Simonet P Appl Environ Microbiol; 2000 Sep; 66(9):4161-7. PubMed ID: 10966449 [TBL] [Abstract][Full Text] [Related]
28. Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 biofilms. Hendrickx L; Hausner M; Wuertz S Appl Environ Microbiol; 2003 Mar; 69(3):1721-7. PubMed ID: 12620864 [TBL] [Abstract][Full Text] [Related]
29. Leaching and transformability of transgenic DNA in unsaturated soil columns. Poté J; Teresa Ceccherini M; Rosselli W; Wildi W; Simonet P; Vogel TM Ecotoxicol Environ Saf; 2010 Jan; 73(1):67-72. PubMed ID: 19828198 [TBL] [Abstract][Full Text] [Related]
30. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Nielsen KM; Smalla K; van Elsas JD Appl Environ Microbiol; 2000 Jan; 66(1):206-12. PubMed ID: 10618225 [TBL] [Abstract][Full Text] [Related]
31. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Pontiroli A; Rizzi A; Simonet P; Daffonchio D; Vogel TM; Monier JM Appl Environ Microbiol; 2009 May; 75(10):3314-22. PubMed ID: 19329660 [TBL] [Abstract][Full Text] [Related]
32. Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. de Vries J; Wackernagel W Mol Gen Genet; 1998 Apr; 257(6):606-13. PubMed ID: 9604883 [TBL] [Abstract][Full Text] [Related]
33. Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mukaihara T; Tamura N; Murata Y; Iwabuchi M Mol Microbiol; 2004 Nov; 54(4):863-75. PubMed ID: 15522073 [TBL] [Abstract][Full Text] [Related]
34. Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Heuer H; Kopmann C; Binh CT; Top EM; Smalla K Environ Microbiol; 2009 Apr; 11(4):937-49. PubMed ID: 19055690 [TBL] [Abstract][Full Text] [Related]
35. [Distribution and diversity of conjugative plasmids among some multiple antibiotic resistant E.coli strains isolated from river waters]. Cernat R; Lazăr V; Balotescu C; Cotar A; Coipan E; Cojocaru C Bacteriol Virusol Parazitol Epidemiol; 2002; 47(3-4):147-53. PubMed ID: 15085604 [TBL] [Abstract][Full Text] [Related]
36. An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. Bennett PM; Livesey CT; Nathwani D; Reeves DS; Saunders JR; Wise R; J Antimicrob Chemother; 2004 Mar; 53(3):418-31. PubMed ID: 14749339 [TBL] [Abstract][Full Text] [Related]
37. [Agrobacterium-mediated transformation of plants: transfer of vector DNA fragments in the plant genome]. Permiakova NV; Shumnyĭ VK; Deĭneko EV Genetika; 2009 Mar; 45(3):305-17. PubMed ID: 19382681 [TBL] [Abstract][Full Text] [Related]
38. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Tzfira T; Citovsky V Curr Opin Biotechnol; 2006 Apr; 17(2):147-54. PubMed ID: 16459071 [TBL] [Abstract][Full Text] [Related]
39. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Rabus R; Kube M; Heider J; Beck A; Heitmann K; Widdel F; Reinhardt R Arch Microbiol; 2005 Jan; 183(1):27-36. PubMed ID: 15551059 [TBL] [Abstract][Full Text] [Related]
40. An assessment of the potential of herbivorous insect gut bacteria to develop competence for natural transformation. Ray JL; Andersen HK; Young S; Nielsen KM; O'Callaghan M Environ Biosafety Res; 2007; 6(1-2):135-47. PubMed ID: 17961487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]