BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 12580439)

  • 1. Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle.
    Nioka S; McCully K; McClellan G; Park J; Chance B
    Adv Exp Med Biol; 2003; 510():267-72. PubMed ID: 12580439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo.
    van der Laan L; Coremans A; Ince C; Bruining HA
    J Surg Res; 1998 Feb; 74(2):155-60. PubMed ID: 9587354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of graded hypoxia on the rat hepatic tissue oxygenation and energy metabolism monitored by near-infrared and 31P nuclear magnetic resonance spectroscopy.
    Seifalian AM; El-Desoky H; Delpy DT; Davidson BR
    FASEB J; 2001 Dec; 15(14):2642-8. PubMed ID: 11726540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise.
    Katz A; Sahlin K
    Acta Physiol Scand; 1987 Sep; 131(1):119-27. PubMed ID: 3673605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability.
    Hogan MC; Stary CM; Balaban RS; Combs CA
    J Appl Physiol (1985); 2005 Apr; 98(4):1420-6. PubMed ID: 15591295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia.
    Harrison DK; Fasching M; Fontana-Ayoub M; Gnaiger E
    J Appl Physiol (1985); 2015 Nov; 119(10):1210-8. PubMed ID: 26251509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype.
    Rezende EL; Garland T; Chappell MA; Malisch JL; Gomes FR
    J Exp Biol; 2006 Jan; 209(Pt 1):115-27. PubMed ID: 16354783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Continuous measurement of peripheral oxygen availability in skeletal muscle of patients with infection].
    Boekstegers P; Weidenhöfer S; Kapsner T; Werdan K
    Infusionsther Transfusionsmed; 1993 Apr; 20 Suppl 1():21-8; discussion 28. PubMed ID: 8499747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.
    Dash RK; Li Y; Kim J; Beard DA; Saidel GM; Cabrera ME
    PLoS One; 2008 Sep; 3(9):e3168. PubMed ID: 18779864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state.
    Khan S; O'Brien PJ
    Biochim Biophys Acta; 1995 Nov; 1269(2):153-61. PubMed ID: 7488648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular PO2 as a determinant of maximal mitochondrial O(2) consumption in trained human skeletal muscle.
    Richardson RS; Leigh JS; Wagner PD; Noyszewski EA
    J Appl Physiol (1985); 1999 Jul; 87(1):325-31. PubMed ID: 10409591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative phosphorylation system during steady-state hypoxia in the dog brain.
    Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M
    J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary oxygen transport during severe hypoxia: role of hemoglobin oxygen affinity.
    Stein JC; Ellsworth ML
    J Appl Physiol (1985); 1993 Oct; 75(4):1601-7. PubMed ID: 8282609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hypoxia and carbon monoxide on muscle oxygenation during exercise.
    Maehara K; Riley M; Galassetti P; Barstow TJ; Wasserman K
    Am J Respir Crit Care Med; 1997 Jan; 155(1):229-35. PubMed ID: 9001317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated in vivo 31P-NMR and NADH fluorometric studies on gerbil brain in graded hypoxia and hyperoxia.
    Gyulai L; Chance B; Ligeti L; McDonald G; Cone J
    Am J Physiol; 1988 May; 254(5 Pt 1):C699-708. PubMed ID: 3364555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():13-31. PubMed ID: 1432706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.